
Math 18.06 - Linear algebra

All readings are from the textbook “Introduction to linear algebra”, 5–th edition, by Gilbert Strang

Lecture 1 (September 4) Reading: sections 1.1–2.1

In 18.02, you learned how to solve systems of linear equations:
2x− 3y = 0

x+ y = 5

2y = 4

(1)

The high-school way to solve this system is to take y out from the last equation (since it is the
more manageable of the three) and get y = 2. Then we plug this answer into either the first or the
second equation, and we get x = 3. So the solution is (x, y) = (3, 2).

There’s also a geometric way to think about the system of equations (1). Linear equations, such
as 2x − 3y = 0, x + y = 5 or 2y = 4, are equations of lines in the xy–plane. Specifically, they
correspond to the blue, green and orange lines in the picture below:

2 4 6

-2

2

4

6

Asking for a solution to the system of equations (1) is the same thing as asking for a point (x, y)
which lies on all three of these lines, or in other words, the intersection of these lines. It’s easy to
see from the picture above that this point is (x, y) = (3, 2).

Another point of view on the system of equations (1) is to rewrite it in matrix form:2 −3
1 1
0 2

[x
y

]
=

0
5
4

 (2)

1

In this way, you solve for the quantity

[
x
y

]
, which is thought of as the point (x, y) in the plane.

There are a number of ways to solve matrix equations like (2), the most general form of which is:

Av = b (3)

where A is an m × n matrix, v is an n × 1 vector, and b is a m × 1 vector. In situations such
as (3), usually A and b are given as part of the problem, while v is the unknown you have to solve for.

Before we delve into ways to solve (3), let us say a thing or two about vectors. We think of:

v =


v1

v2

...
vn

 (4)

as a point in n–dimensional space. For example, 2–dimensional space is a plane (such as the surface
of the paper, or a blackboard), while 3–dimensional space, is... well, ordinary space. Consider the
following operations:

• given two vectors v =


v1

v2

...
vn

 and w =


w1

w2

...
wn

, you may add them componentwise:

v +w =


v1 + w1

v2 + w2

...
vn + wn


• given a vector v and a number α (called scalar), we can multiply them together:

αv =


αv1

αv2

...
αvn


Combining the two operations above, we will say a linear combination of two vectors v and w
is any expression of the form:

αv + βw =


αv1 + βw1

αv2 + βw2

...
αvn + βwn


The numbers α and β are called the coefficients of the linear combination. So we’ve seen the
definition, but what does the concept of “linear combination” actually mean? Let’s take an easy
example:

v =

1
0
0

 w =

0
0
1

 ⇒ linear combinations are αv + βw =

α0
β


2

As α and β run over all possible numbers, the right-hand side runs over all vectors in the xz–plane
(which in turn is a subset of xyz–space). Given that v is the unit vector on the x–axis and w is
the unit vector on the z–axis, the principle here is the following.

Fact 1. Almost 1 any two n×1 vectors v and w trace out a 2–dimensional plane in n–dimensional
space. Any vector in the aforementioned plane is a linear combination of v and w, and vice-versa.

Example 1. Let’s draw the plane traced out by the vectors v =

 2
0
−1

 and w =

0
3
1

.

To do this, mark v and w as lattice points in space. Then trace out the lines passing through the
origin and either the point v or w. Finally, trace out the 2–plane spanned by these two lines.

We can use the language of linear combinations to make sense of systems of equations such as (3).
Let’s look at the specific example (2). Because:[

x
y

]
=

[
x
0

]
+

[
0
y

]
= x ·

[
1
0

]
+ y ·

[
0
1

]
then formula (2) reads:2 −3

1 1
0 2

[x
y

]
= x ·

2 −3
1 1
0 2

[1
0

]
+ y ·

2 −3
1 1
0 2

[0
1

]
= x ·

2
1
0

+ y ·

−3
1
2

 =

0
5
4


Therefore, solving for (x, y) is the same thing as finding a certain linear combination of the vectors2

1
0

 and

−3
1
2

 (which are nothing but the columns of the 3 × 2 matrix in the left-hand side of

(2)) that produces the vector

0
5
4

. Such a linear combination only exists if the latter vector lies

in the plane spanned out by the former vectors, which is indeed the case in our example. In general:

Fact 2. The equation Av :=

a11 . . . a1n

...
. . .

...
am1 . . . amn


v1

...
vn

 =

 b1...
bm

 =: b is equivalent to:

v1

a11

...
am1

+ ...+ vn

a1n

...
amn

 =

 b1...
bm

 (5)

This precisely asks which linear combinations of the columns of the matrix A are equal to the vector
b.

1The word “almost” requires us to exclude the case when v and w are collinear, i.e. on the same line passing
through the origin; we will discuss this issue further when introducing the notion of linear independence

3

There is another operation that one can perform on two vectors, the dot product:

if v =

v1

...
vn

 and w =

w1

...
wn

 then v ·w = v1w1 + ...+ vnwn

VERY IMPORTANT: the dot product of two vectors is a number (a.k.a. scalar). There is no
way to multiply two vectors in such a way as to obtain a vector (with the notable exception of the
cross-product for vectors with n = 3 components, but that’s another story).

The dot product allows us to describe the angle θ between two vectors v and w. Recall that:

v ·w = 0 means that θ = 90◦

For example, take v =

[
−2
1

]
and w =

[
2
4

]
:

-2 -1 1 2

1

2

3

4

The angle between these two vectors is 90◦, and indeed v ·w = (−2) · 2 + 1 · 4 = 0. But the dot
product describes arbitrary angles, not just right angles. The general formula is:

cos θ =
v ·w
||v|| ||w||

(6)

where the length of a vector is given by:

||v|| =
√
v · v =

√
v2

1 + v2
2 + ...+ v2

n (7)

So if you want to compute the angle between two lines, apply formula (6) with v and w being the
unit (i.e. length 1) vectors corresponding to those lines. Then the formula in question precisely
says that the cosine of the angle is equal to the dot product of unit vectors.

Lecture 2 (September 6) Reading: sections 2.2–2.3

The basic method for solving systems of equations is Gaussian elimination. For instance:
x− y + 2z = 1

−2x+ 2y − 3z = −1

−3x− y + 2z = −3

or, equivalently,

 1 −1 2
−2 2 −3
−3 −1 2

xy
z

 =

 1
−1
−3

 (8)

4

The 3 × 3 matrix A =

 1 −1 2
−2 2 −3
−3 −1 2

 is called the coefficient matrix, while v =

xy
z

 is the

unknown vector. Geometrically, the system (8) consists of three linear equations in xyz–space.
Each of these equations determines a 2–dimensional plane in 3–dimensional space, so the system
of equations computes the coordinates (x, y, z) of the intersection point of three planes.

Gaussian elimination is the following algorithm. Consider the augmented matrix: 1 −1 2 1

−2 2 −3 −1

−3 −1 2 −3

 (9)

obtained by tacking the right-hand side of (8) onto the right of the matrix A. The pivot of each
row (marked by a box) refers to the leftmost non-zero entry on that row. The game is the following:
by performing row eliminations (namely adding any multiple of row j to row i, for various i > j),
your goal is to ensure that the pivot of the first row is strictly to the left of the pivot on the second
row, which in turn is strictly to the left of the pivot on the third row ... etc.

The particular row eliminations you have to do are imposed upon by the following algorithm. Start
from the pivot on the first row. I claim that there’s a single choice of row eliminations which will
ensure that the entries below the pivot on the first row will be 0. This is because:

a · 1 + (−2) = 0 implies a = 2

b · 1 + (−3) = 0 implies b = 3

so we must add 2 times the first row to the second row and 3 times the first row to the third row,
in order to achieve our stated goal of having the entries below the pivot be 0. 1 −1 2 1

−2 + 2 · 1 2 + 2 · (−1) −3 + 2 · 2 −1 + 2 · 1
−3 + 3 · 1 −1 + 3 · (−1) 2 + 3 · 2 −3 + 3 · 1

 =

 1 −1 2 1

0 0 1 1

0 −4 8 0


The next step is to find the the pivot of the second row, and repeat the process. But wait! In the
example above, the pivot on the second row is to the right of the pivot on the third row. Whenever
this happens, there’s no row elimination which will put the pivots in the right order (namely the
pivot on the second row to the left of the pivot on the third row). So we allow ourselves to make an
extra move: row exchanges. Specifically, we simply swap the second and third rows. We obtain: 1 −1 2 1

0 −4 8 0

0 0 1 1

 (10)

This augmented matrix is in row echelon form, which is the purpose of Gaussian elimination:
all the pivots are non-zero, and each pivot is strictly to the right of the one on the row above.

Remark. There’s a variant of this algorithm, called Gauss-Jordan elimination, which entails doing
two additional steps. Firstly, multiply all the rows of the augmented matrix by appropriate constants,

5

so that all the pivots are equal to 1:  1 −1 2 1

0 1 −2 0

0 0 1 1


Then, we do some further row operations so that all the entries above the pivots are 0. In the case
of the matrix at hand, we add 2 times the third row to the second row: 1 −1 2 1

0 1 0 2

0 0 1 1


and then we add −2 times the third row and 1 times the second row to the first row: 1 0 0 1

0 1 0 2

0 0 1 1


The output of Gauss-Jordan elimination is said to be in reduced row echelon form, i.e. a matrix
which is both in row echelon form, and satisfies the two conditions underlined above.

The augmented matrix (10) corresponds to the following system of linear equations:1 −1 2
0 −4 8
0 0 1

xy
z

 =

1
0
1

 or, equivalently,


x− y + 2z = 1

−4y + 8z = 0

z = 1

(11)

and the great thing about Gaussian elimination is that this system of equations is actually equiv-
alent to (8): any solution (x, y, z) of (8) is also a solution of (11), and vice versa.

So why did we go through the trouble of Gaussian (or Gauss-Jordan) elimination? This is because
systems where the coefficient matrix is in (reduced) row echelon form are really easy to solve by
hand, by the following procedure (for which the technical term is back substitution): the third
equation in (11) gives you z = 1, which you can plug into the second equation to get y = 2, which
you can plug into the first equation to get x = 1. So the solution is (x, y, z) = (1, 2, 1).

Remark. If the row echelon form of a matrix A has a full row of zeroes (i.e. no pivot on the
last row), then the matrix A is called singular. In this case, the system (11) may not have any
solutions or may have more solutions than expected. Otherwise, the matrix is called non-singular.

So what is going on behind this method? Back substitution provided such a quick answer because:

Uv = c (12)

is a very easy system to solve if U is in row echelon form. Indeed, you solve for the last component
of the vector v first, then for the next-to-last one, then for the next-to-next-to-last one etc. If you
need to solve a system of equations for a general matrix A, then Gaussian elimination precisely
provides a recipe for putting A in row echelon form, at the cost of performing the following row
operations (for any i > j):

6

• Adding the j–th row times λ to the i–th row of A is achieved by multiplying the latter on
the left with an elimination matrix:

A E
(λ)
ij A where E

(λ)
ij =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 λ 0 1 0
0 0 0 0 1


The entry λ is on the i–th row and j–th column (in the formula above, i = 4 and j = 2). 2

• Switching the i–th and j–th rows of A is achieved by multiplying the latter on the left with
a permutation matrix:

A PijA where Pij =


1 0 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 0 1


Explicitly, Pij has coefficients 1 on positions (i, j), (j, i) and (k, k) for all k 6= i, j, and all
other coefficients of Pij are 0 (in the formula above, i = 3 and j = 4).

• If you wish to put the matrix in reduced row echelon (as opposed to just row echelon) form,
you will also need to multiply the i–th row of A by various constants λ, which is achieved by
multiplying A by a diagonal matrix:

A D
(λ)
i A where D

(λ)
i =


1 0 0 0 0
0 λ 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


The entry λ is on the i–th row (in the formula above, i = 2).

So let’s see what these matrices amount to in the example of (8). We will forget about the 3 × 4
augmented matrix [A|b] and just discuss Gaussian elimination on the 3× 3 matrix:

A =

 1 −1 2
−2 2 −3
−3 −1 2


and the first thing we did was to add 2 times the first row to the second row:

E
(2)
21 A =

1 0 0
2 1 0
0 0 1

 1 −1 2
−2 2 −3
−3 −1 2

 =

 1 −1 2
0 0 1
−3 −1 2


2If you’re doing Gauss-Jordan elimination, you will also need the elimination matrices E

(λ)
ij for i < j.

7

The next thing we did was to add 3 times the first row to the third row:

E
(3)
31 E

(2)
21 A =

1 0 0
0 1 0
3 0 1

 1 −1 2
0 0 1
−3 −1 2

 =

1 −1 2
0 0 1
0 −4 8


Then we exchanged the second and third rows:

P23E
(3)
31 E

(2)
21 A =

1 0 0
0 0 1
0 1 0

1 −1 2
0 0 1
0 −4 8

 =

1 −1 2
0 −4 8
0 0 1

 =: U (13)

and we have achieved precisely the row echelon form matrix of (11).

Remark. Suppose we wish to go further, and do Gauss-Jordan elimination. Then we need to make
all the pivots 1, and to this end we must multiply the second row by −1/4:

D
(− 1

4)
2 U =

1 0 0
0 −1

4 0
0 0 1

1 −1 2
0 −4 8
0 0 1

 =

1 −1 2
0 1 −2
0 0 1


The pivots are the 1’s on the diagonal. To put U in reduced row echelon form, we need to kill all
the non-zero entries above the 1’s. This is achieved by adding 2 times the third row to the second
row, then adding −2 times the third row to the first row, then adding the second row to the first:

E
(1)
12 E

(−2)
13 E

(2)
23 D

(− 1
4)

2 U =

1 1 0
0 1 0
0 0 1

1 0 −2
0 1 0
0 0 1

1 0 0
0 1 2
0 0 1

1 −1 2
0 1 −2
0 0 1

 =

1 0 0
0 1 0
0 0 1

 =: R

The matrix R is now in reduced row echelon form.

Very importantly, this procedure also allows us to convert the system of equations (8) into a system
of the form (12). Specifically, take the equality (8) and multiply it on the left with the particular
product of elimination/permutation/diagonal matrices which appears in (13). We obtain:

P23E
(3)
31 E

(2)
21 A︸ ︷︷ ︸

U

v = P23E
(3)
31 E

(2)
21 b (14)

If we let:

c := P23E
(3)
31 E

(2)
21 b =

1 0 0
0 0 1
0 1 0

1 0 0
0 1 0
3 0 1

1 0 0
2 1 0
0 0 1

 1
−1
−3

 =

=

1 0 0
0 0 1
0 1 0

1 0 0
0 1 0
3 0 1

 1
1
−3

 =

1 0 0
0 0 1
0 1 0

1
1
0

 =

1
0
1


then formula (14) reads precisely (12), which establishes the following important principle:

8

Fact 3. If:
A = LU and b = Lc

for some matrix L (which in practice will be a product of elimination/permutation/diagonal matri-
ces), then the system Av = b is equivalent (i.e. has the same solution v) as the system Uv = c.

Since we have already seen that it is easy to solve a system of equations where the matrix U is in
row echelon form, this gives a pretty general algorithm for solving general systems of equations.

Remark. Gaussian (or Gauss-Jordan) elimination can be applied to any m× n matrix, producing
a matrix in row (or reduced row) echelon form. The fact that in the first part of this lecture, we
applied it to the augmented matrix [A|b] is simply because this is what you’re supposed to do if
you want Gaussian elimination to help you solve systems of equations. But as we have seen in the
second part of this lecture, the method of Gaussian elimination can be applied to the matrix A itself.

Lecture 3 (September 9) Reading: sections 2.4–2.5

Let’s delve a little deeper into matrix multiplication. The key thing is the following:(
m× n matrix

)(
n× p matrix

)
=
(
m× p matrix

)
(15)

AB only makes sense if the number of columns of A equals the number of rows of B.

Assume A is an m×n matrix with entries aij and that B is an n× p matrix with entries bij . Then
the product C = AB is a m× p matrix, whose entry on the i–th row and j–th column is equal to:

cij = ai1b1j + ai2b2j + ...+ ainbnj =

n∑
k=1

aikbkj (16)

Here’s how to see the same computation by looking at the matrices themselves:∗ ∗ ∗ ∗ ∗
∗ ∗ cij ∗ ∗
∗ ∗ ∗ ∗ ∗


︸ ︷︷ ︸

AB

=

 ∗ ∗ ∗ ∗
ai1 ai2 . . . ain
∗ ∗ ∗ ∗


︸ ︷︷ ︸

A


∗ ∗ b1j ∗ ∗
∗ ∗ b2j ∗ ∗
∗ ∗ . . . ∗ ∗
∗ ∗ bnj ∗ ∗


︸ ︷︷ ︸

B

(in the example above, m = 3, n = 4, p = 5, i = 2, j = 3). The i–th row of the matrix A and the
j–th column of the matrix B are vectors of the same size, namely n. Formula (16) precisely says
that the (i, j)–entry in the matrix AB is the dot product of these two vectors.

What if we wanted to look at the entire i–th row of the matrix AB?

 ∗ ∗ ∗ ∗ ∗
ci1 ci2 cip
∗ ∗ ∗ ∗ ∗


︸ ︷︷ ︸

C=AB

=

 ∗ ∗ ∗ ∗
ai1 ai2 . . . ain
∗ ∗ ∗ ∗


︸ ︷︷ ︸

A


b11 b12 b1p
b21 b22 b2p
...

...
. . .

. . .
...

bn1 bn2 bnp


︸ ︷︷ ︸

B

9

The entire i–th row of AB is a linear combination of the rows of B, according to the rule:[
ci1 ci2 cip

]
= ai1

[
b11 b12 b1p

]
+ ...+ ain

[
bn1 bn2 bnp

]
Similarly, we may ask about the entire j–th column of the matrix AB:∗ ∗ c1j ∗ ∗

∗ ∗
... ∗ ∗

∗ ∗ cmj ∗ ∗


︸ ︷︷ ︸

C=AB

=

a11 a12 . . . a1n

...
...

. . .
...

am1 am2 . . . amn


︸ ︷︷ ︸

A


∗ ∗ b1j ∗ ∗
∗ ∗ b2j ∗ ∗

∗ ∗
... ∗ ∗

∗ ∗ bnj ∗ ∗


︸ ︷︷ ︸

B

The entire j–th column of AB is a linear combination of the columns of A, according to the rule: c1j

...
cmj

 =

a11

...
am1

 b1j +

a12

...
am2

 b2j + ...+

a1n

...
amn

 bnj
The two computations we have just seen are particular instances of block multiplication of
matrices. Explicitly, we say that matrices A and B have block decompositions:

A =

[
A11 A12

A21 A22

]
and B =

[
B11 B12

B21 B22

]
if Aij is an mi × nj matrix, and Bjk is a nj × pk matrix for all i, j, k ∈ {1, 2} and some integers
m1,m2, n1, n2, p1, p2. Very important: the sizes of the blocks in a block decompositions always
match at the boundaries (for example, the number of rows of A11 is the same as the number of rows
of A12, and the number of columns of A11 is the same as the number of columns of A21). Then the
product matrix AB also has a block decomposition:

AB =

[
A11B11 +A12B21 A11B12 +A12B22

A21B11 +A22B21 A21B12 +A22B22

]
(17)

where each of the four blocks in (17) is matrix multiplication in its own right (the sizes of these
blocks are mi×pk). Thus, you may reduce the multiplication of the bigger matrices A and B to the
multiplication of the smaller matrices Aij and Bjk. This allows you to recursively reduce matrix
multiplication to the smallest blocks, namely 1× 1, which are simply individual matrix entries.

Matrix multiplication satisfies many important rules, such as:

• associativity: A(BC) = (AB)C

• distributivity: A(B + C) = AB +AC and (A+B)C = AC +BC

• unit element: AI = IA = A, where I =


1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

 is called the unit (or identity) matrix

10

Moreover, given a square matrix A, we can form its powers:

Ap = AA...A︸ ︷︷ ︸
p times

Just like with numbers, we set:

A0 = I = the identity matrix

but can we talk about negative powers? This is the point of the following definition.

Definition 1. Given a square matrix A, its inverse is a matrix A−1 with the property that:

AA−1 = A−1A = I (18)

Not all square matrices have inverses (those which do are called non-singular and those which do
not are called singular) but if an inverse exists, it is unique. For example, consider the matrix:

A =

[
1 5
2 10

]

If it had an inverse A−1 =

[
a b
c d

]
, then we would have:

[
1 5
2 10

] [
a b
c d

]
=

[
1 0
0 1

]
(19)

As we have seen, this implies that the columns of the identity matrix, namely:[
1
0

]
and

[
0
1

]
(20)

are both linear combinations of the columns of A, namely:[
1
2

]
and

[
5
10

]
(21)

But this is clearly impossible, as the vectors (21) are both on the line of slope 2 in the plane, and
therefore so is any linear combination of them. Meanwhile, the vectors (20) are not confined to this
line, so we conclude that formula (19) cannot hold, and therefore A is singular.

The argument we have just given can be combined with Gauss-Jordan elimination to provide an
algorithm for computing the inverse of a matrix A. Start by constructing the augmented matrix:[

A I
]

(22)

where A and I are both n× n. If A is non-singular, then Gauss-Jordan elimination will output:[
I B

]
(23)

for some matrix B. Now how does Gauss-Jordan elimination get you from (22) to (23)? We have
seen last time that it does this by multiplying (22) on the left with another matrix C:

C
[
A I

]
=
[
I B

]
11

But from the rules of multiplying block matrices, this is equivalent to the two matrix equalities:

CA = I and CI = B

Therefore, C = CI = B, hence BA = I, hence B is the sought-for inverse of A. So the right-most
block of (23), which is produced by Gauss-Jordan elimination, is precisely the inverse of A.

Being able to calculate inverses of matrices is a very helpful skill, since they allow you to solve
square systems of equations (i.e. those systems where the number of equations is equal to the
number of unknowns). Specifically, if you have a system Av = b and you multiply it on the left by
A−1, then you obtain:

v = A−1b (24)

which is precisely the same as solving for the unknown vector v. A useful tool in computing matrices
is the following formula:

(AB)−1 = B−1A−1 (25)

which says that the inverse of a product (of square matrices) is the product of the inverses, but
taken in reverse order. This is very meaningful, since the order in which we multiply matrices is
important (a fancy way of saying this is that matrix multiplication is not commutative). Finally, a
nice consequence of being able to define inverse matrices is that the expression:

An (26)

now makes sense for any integer n, if A is a non-singular square matrix. If n is negative, then you
just define (26) as the −n th power of the inverse matrix A−1. This is just the basic requirement
that the usual formulas for powers:

AmAn = Am+n and (Am)n = Amn (27)

continue to hold for matrices.

Lecture 4 (September 11) Reading: section 2.6

Let us return to Gaussian elimination, in the particular case of a square n× n matrix. If the algo-
rithm doesn’t require any rows to be exchanged (which is the case for most, but not all matrices),
then the algorithm goes as follows:

• first step: add a multiple λ21 of the first row to the second, then a multiple λ31 of the first
row to the third, ... then a multiple λn1 of the first row to the n–th row

• second step: add a multiple λ32 of the second row to the third, then a multiple λ42 of the
second row to the fourth row, ... then a multiple λn2 of the second row to the n–th row

• ...

12

• (n − 2)–th step: add a multiple λn−1,n−2 of the (n − 2)–th row to the (n − 1)–th row, then
add a multiple λn,n−2 of the (n− 2)–th row to the n–th row

• (n− 1)–th step: add a multiple λn,n−1 of the (n− 1)–th row to the n–th row.

As we have seen in Lecture 2, each step in the algorithm above involves multiplying A on the left
by an elimination matrix. As a formula, this states that:

E
(λn,n−1)
n,n−1︸ ︷︷ ︸

(n−1)–th step

E
(λn,n−2)
n,n−2 E

(λn−1,n−2)
n−1,n−2︸ ︷︷ ︸

(n−2)–th step

E
(λn,n−3)
n,n−3 E

(λn−1,n−3)
n−1,n−3 E

(λn−2,n−3)
n−2,n−3︸ ︷︷ ︸

(n−3)–th step

...

... E
(λn2)
n2 ...E

(λ42)
42 E

(λ32)
32︸ ︷︷ ︸

second step

E
(λn1)
n1 ...E

(λ31)
31 E

(λ21)
21︸ ︷︷ ︸

first step

A = U (28)

where U is a matrix in row echelon form. Because we are in the square matrix case, U is also a
square matrix, so row echelon form is the same thing as upper triangular.

Fact 4. Each elimination matrix E
(λ)
ij is a lower triangular matrix, and its inverse is given by:(

E
(λ)
ij

)−1
= E

(−λ)
ij (29)

Indeed, let’s establish formula (29) in the case of 2× 2 matrices (so i = 2, j = 1):[
1 0
λ 1

]−1

=

[
1 0
−λ 1

]
which is an easy computation to prove by hand. The proof of (29) for general n × n matrices is
similar, and you can think about it, if you’d like.

Using formula (29), let’s convert (28) into a formula for A. The first step to doing so is to multiply

equation (28) on the left by the inverse of E
(λn,n−1)
n,n−1 , which according to (29) is precisely E

(−λn,n−1)
n,n−1 :(

E
(λn,n−2)
n,n−2 E

(λn−1,n−2)
n−1,n−2

)(
E

(λn,n−3)
n,n−3 E

(λn−1,n−3)
n−1,n−3 E

(λn−2,n−3)
n−2,n−3

)
...
(
E

(λn1)
n1 ...E

(λ31)
31 E

(λ21)
21

)
A =

=
(
E

(λn,n−1)
n,n−1

)−1
U = E

(−λn,n−1)
n,n−1 U

Then multiply the equation above on the left by the inverse of E
(λn,n−2)
n,n−2 E

(λn−1,n−2)
n−1,n−2 , which according

to (25) and (29) is precisely E
(−λn−1,n−2)
n−1,n−2 E

(−λn,n−2)
n,n−2 . We obtain:(

E
(λn,n−3)
n,n−3 E

(λn−1,n−3)
n−1,n−3 E

(λn−2,n−3)
n−2,n−3

)
...
(
E

(λn1)
n1 ...E

(λ31)
31 E

(λ21)
21

)
A =

=
(
E

(λn,n−2)
n,n−2 E

(λn−1,n−2)
n−1,n−2

)−1 (
E

(−λn,n−1)
n,n−1

)
U =

(
E

(−λn−1,n−2)
n−1,n−2 E

(−λn,n−2)
n,n−2

)(
E

(−λn,n−1)
n,n−1

)
U

We repeat this multiplication procedure n− 3 times, and we arrive at the formula:

A =
(
E

(−λ21)
21 ...E

(−λn1)
n1

)
...
(
E

(−λn−1,n−2)
n−1,n−2 E

(−λn,n−2)
n,n−2

)(
E

(−λn,n−1)
n,n−1

)
U (30)

13

Now here’s the kicker: each E
(λ)
ij is a lower triangular matrix, namely one which has zeroes above

the diagonal, and moreover the diagonal entries are all 1. It is easy to see that a product of lower
triangular matrices is still lower triangular, for example: 1 0 0

2 1 0
−3 4 1

 1 0 0
−1 1 0
2 −1 1

 =

 1 0 0
1 1 0
−5 3 1


Therefore, the product of elimination matrices in (30), namely:

L =
(
E

(−λ21)
21 ...E

(−λn1)
n1

)
...
(
E

(−λn−1,n−2)
n−1,n−2 E

(−λn,n−2)
n,n−2

)(
E

(−λn,n−1)
n,n−1

)
(31)

is still lower triangular, and moreover its diagonal entries are all 1. We conclude that:

A = LU (32)

where L is a lower triangular matrix and U is an upper triangular matrix. Therefore, we summarize
this whole discussion by saying that: Gaussian elimination on a square matrix is equivalent
to writing it as a product of a lower and an upper triangular matrix (assuming there
are no row exchanges). Moreover, if A is non-singular, then the matrices L and U in (32) are unique.

Let’s do an example, namely Gaussian elimination of the matrix:

A =

 2 4 1
−4 −5 0
−2 5 6


First, let’s add 2 times the first row to the second row, and we get:

E
(2)
21 A =

1 0 0
2 1 0
0 0 1

 2 4 1
−4 −5 0
−2 5 6

 =

 2 4 1
0 3 2
−2 5 6


Then, let us add 1 times the first row to the third row, and we get:

E
(1)
31 E

(2)
21 A =

1 0 0
0 1 0
1 0 1

 2 4 1
0 3 2
−2 5 6

 =

2 4 1
0 3 2
0 9 7


Finally, we add −3 times the second row to the third row, and we get:

E
(−3)
32 E

(1)
31 E

(2)
21 A =

1 0 0
0 1 0
0 −3 1

2 4 1
0 3 2
0 9 7

 =

2 4 1
0 3 2
0 0 1

 =: U (33)

Since the matrix on the right is upper triangular, hence in row echelon form, we are done with
Gaussian elimination! To write A in the form (32), we need to isolate A in the left-hand side. To do
so, we must successively multiply the equation above with the inverses of the elimination matrices

E
(−3)
32 , E

(1)
31 and E

(2)
21 . We have:

E
(1)
31 E

(2)
21 A = E

(3)
32 U

E
(2)
21 A = E

(−1)
31 E

(3)
32 U

14

A = E
(−2)
21 E

(−1)
31 E

(3)
32 U

If we set:

L = E
(−2)
21 E

(−1)
31 E

(3)
32 =

 1 0 0
−2 1 0
0 0 1

 1 0 0
0 1 0
−1 0 1

1 0 0
0 1 0
0 3 1

 =

 1 0 0
−2 1 0
−1 3 1

 (34)

then we conclude that A = LU holds with U and L given by (33) and (34), respectively. Note that
L has 1’s on the diagonal, while U does not. If you’d like, you can write U as a diagonal matrix
times an upper triangular matrix with 1’s on the diagonal, for example:2 4 1

0 3 2
0 0 1

 =

2 0 0
0 3 0
0 0 1

1 2 1
2

0 1 2
3

0 0 1

 (35)

Basically, this is done by writing U = DŨ , where D is the diagonal matrix with the same diagonal
entries as the upper triangular matrix U , and Ũ is upper triangular with 1’s on the diagonal.

Definition 2. The LU factorization of a matrix A consists of the unique matrices U and L (the
former upper and the latter lower triangular with 1’s on the diagonal) such that A = LU holds.

Similarly, the LDU factorization of a matrix A consists of the unique matrices U , D and L (where D
is diagonal, while U and L are upper/lower triangular with 1’s on the diagonal) such that A = LDU .

Note that if you have the LU factorization, you can easily get the LDU factorization, essentially
by procedure (35). Let’s end with a remark: suppose you do Gaussian elimination on a square
matrix A, and you bring it in the form (30). Now you may be taken aback by the task of actually
having to perform the multiplication (31) in order to compute L. However, a great fact about lower
triangular matrices is the following formula:

(
E

(−λ21)
21 ...E

(−λn1)
n1

)
...
(
E

(−λn−1,n−2)
n−1,n−2 E

(−λn,n−2)
n,n−2

)(
E

(−λn,n−1)
n,n−1

)
=


1 0 0 0 0
−λ21 1 0 0 0
...

... 1 0 0
−λn−1,1 −λn−1,2 . . . 1 0
−λn1 −λn2 . . . −λn,n−1 1


Note that this formula only holds because of the specific order in which the matrices E

(−λ)
ij were

multiplied in the left-hand side. If you had multiplied the matrices in (almost) any other order,
you would not have obtained a result as nice as the right-hand side.

Lecture 5 (September 13) Reading: section 2.7

A permutation matrix is a square matrix which has a single 1 on each row and column, and 0
everywhere else. For example, the following is a 4× 4 permutation matrix:

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 (36)

15

For all i ∈ {1, ..., n}, look at the single 1 on the i–th row, and let σ(i) ∈ {1, ..., n} be the column
where that 1 lies. By the very definition of a permutation matrix, the numbers σ(1), ..., σ(n) are all
different, hence they determine a permutation of the numbers 1, ..., n. For example, the permutation
corresponding to the matrix (36) is (2, 1, 4, 3). This is the reason why permutation matrices are
called this way, because they are in one-to-one correspondence with usual permutations. Therefore:

the number of n× n permutation matrices is n! = 1 · 2 · 3 · ... · (n− 1) · n (37)

The particular matrix Pij we encountered in Lecture 2 (when discussing the matrix meaning of the
various steps in Gaussian elimination) corresponds to the permutation of the numbers 1, ..., n that
switches i and j, but keeps all other numbers unchanged.

Suppose you do Gaussian elimination on a square matrix A, always taking care that the pivots are
in the right place before doing elimination. For example, we may have:

A =

0 0 3
1 1 2
1 2 −1


Since the pivot on the first row is to the right of the pivots on the other two rows, let us remedy
the situation by exchanging the roles of the first and third rows. As we have seen in Lecture 2, this
is achieved by multiplying A on the left with the permutation matrix P13:

P13A =

1 2 −1
1 1 2
0 0 3


Then we do elimination, by subtracting the first row from the second one:

E
(−1)
21 P13A =

1 2 −1
0 −1 3
0 0 3

 =: U

and the right-hand side is not in row echelon form, i.e. upper triangular. We may move any product
of E’s to the right-hand side by multiplying the equation above with their inverses, thus obtaining:

P13A = E
(1)
21 U

Since E
(1)
21 is a lower triangular matrix and P13 is a permutation matrix, this is a particular example

of the following general formula, which holds for any non-singular matrix A:

PA = LU (38)

where P is a permutation matrix, L is lower triangular and U is upper triangular. As we have seen
in the example above, P is obtained from A by first rearranging its rows in such a way that the
pivots are in the standard order (i.e. ordered left-to-right as we go from top-to-bottom). Then L
and U are obtained by the usual Gaussian elimination we described in the previous lecture.

Remark. Look up to where the word “before” is underlined. If we replace this word by “after”,
and go Gaussian elimination by first applying elimination matrices and the applying row exchanges,
then the factorization you get is A = LPU , where P is a permutation matrix. This is a variant of
the PA = LU decomposition described above.

16

Another feature of matrices is the operation of taking transposes. Specifically, if A is an m × n
matrix, its transpose AT is an n×m matrix obtained by switching the roles of rows and columns:

if A =

[
1 2 3
4 5 6

]
then AT =

1 4
2 5
3 6


So the first row of A becomes the first column of AT etc. In terms of entries, the ij entry of A is
the ji entry of AT , for all i and j. Transposes follow certain rules:

(A+B)T = AT +BT (AB)T = BTAT (39)

(AT)T = A (A−1)T = (AT)−1 (40)

(the last property requires A to be square and non-singular, or we couldn’t talk about its inverse).

Transposes are related to a lot of things, for example, the dot product of vectors. Compare:

the dot product

a1

...
an

 ·
b1...
bn

 = a1b1 + ...+ anbn

the matrix multiplication

a1

...
an

T b1...
bn

 =
[
a1 ... an

] b1...
bn

 =
[
a1b1 + ...+ anbn

]
In other words, given two vectors v and w, the only entry of the 1 × 1 matrix vTw is the same
number as the dot product v ·w.

Another instance of transposes comes about when studying symmetric matrices, namely square
matrices which are equal to their own transposes:

S is called symmetric if S = ST (41)

For example, the following matrix is symmetric: 2 5 −1
5 4 8
−1 8 0


because it is unchanged upon reflecting it across its diagonal. All diagonal matrices:

d1 0 . . . 0 0
0 d2 . . . 0 0
...

...
. . .

...
...

0 0 . . . dn−1 0
0 0 . . . 0 dn


are symmetric. More generally, here’s a general recipe to obtain symmetric matrices:

for any matrix A, the matrix S = ATA is symmetric (42)

17

which holds even if the matrix A is rectangular. To prove this, note that (using (39) and (40)):

ST = (ATA)T = AT (AT)T = ATA = S

Finally, let us note an important reason why symmetric matrices are important from a compu-
tational viewpoint. The LU factorization of a symmetric matrix takes a particularly nice form:

S = LDLT (43)

where L is a lower triangular matrix with 1’s on the diagonal, and D is a diagonal matrix. So in
other words, symmetric matrices are precisely those whose LDU decomposition has the property
that U = LT .

Lecture 6 (September 16) Reading: section 3.1

A key idea of linear algebra is to think of a line/plane/space as a vector space. Specifically, this
means that points of n–dimensional space:

Rn =
{

set of all n–tuples of real numbers
}

=
{

(x1, ..., xn), x1, ..., xn are real numbers
}

(44)

can be thought of as column vectors, according to the correspondence:

(x1, ..., xn) ↔

x1

...
xn


For example, R is the line, R2 is the plane, R3 is usual space. But the key thing about thinking of
these as sets of vectors is that vectors can be added, and vectors can be multiplied with scalars:x1

...
xn

+

y1

...
yn

 =

x1 + y1

...
xn + yn

 and α

x1

...
xn

 =

αx1

...
αxn

 (45)

Definition 3. A vector space is a set V , together with a notion of how to add two elements in
V , and a notion of how to multiply an element of V by a scalar. In other words:

for any v,w ∈ V, there must be a rule for defining v +w ∈ V (46)

for any v ∈ V, α ∈ R, there must be a rule for defining αv ∈ V (47)

This may seem abstract, but I will now spell out the main examples of vector spaces we will
encounter in this course. First of all, Rn is a vector space, because of (45): the sum of vectors
is a well-defined vector, and a vector times a scalar is a well-defined vector. More generally, we have:

Definition 4. If V is a vector space, then a subset S ⊂ V is called a subspace if:

for any v,w ∈ S, then v +w ∈ S (48)

for any v ∈ V, α ∈ R, then αv ∈ S (49)

where the notions “v +w” and “αv” are well-defined, because S is a subset of a vector space V .

18

By combining (48) and (49), we have the more general fact for any subspace S of a vector space:

for all v1, ...,vk ∈ S and α1, ..., αk ∈ R

then:
α1v1 + ...+ αkvk (50)

lies in S. For any scalars α1, ..., αk, the vector in (50) will be called a linear combination of the
vectors v1, ...,vk.

In this course, we will be interested in subspaces S ⊂ Rn. There is a mind-boggling infinity of
subsets of Rn, but only a select few of them will turn out to be subspaces. In the case n = 1,
there are only two subsets S ⊂ R which are subspaces: S = {0} (the zero subspace) and S = R
itself (the whole line). In the case n = 2, the subsets S ⊂ R2 which are subspaces are of three types:

• S = {0} (the zero subspace)

• S = any line passing through the origin

• S = R2 (the whole plane)

Indeed, if S contains any non-zero vector, then it contains the whole line passing though the origin
and that vector, due to (49). And if S contains two non-zero vectors not on the same line, then
it contains the entire plane, due to (50). Based on this pattern, you can probably guess that the
subsets S ⊂ R3 which are subspaces are: the zero subspace, any line passing through the origin,
any plane passing through the origin, and the whole space.

Now comes the point where we explain what all of this has to do with linear algebra, specifically
with solving systems of equations like Av = b. We start from the following definition.

Definition 5. The column space of an m× n matrix A is the subspace:

C(A) ⊂ Rm (51)

spanned by the columns of A (the matrix A has n columns).

Here and throughout, the subspace spanned by any vectors v1,...,vk is defined to be the set of all
linear combinations (50) of those vectors.

Exercise: prove that the subspace spanned by any number of vectors in Rm is a subspace, in the
sense of Definition 4. In the meantime, here is an example:

if A =

1 2
1 4
1 6

 then C(A) =

α
1

1
1

+ β

2
4
6

 , for all scalars α and β



19

So in other words, the column space in the example above is the plane traced out by the vectors1
1
1

 and

2
4
6

 in space. However:

if B =

1 2
2 4
3 6

 then C(B) =

α
1

2
3

+ β

2
4
6

 , for all scalars α and β

 =

=

γ
1

2
3

 , for all scalars γ

 (52)

so the column space of B is the line determined by the vector

1
2
3

. The reason for this is that the

other column, namely

2
4
6

, is already on the said line. Taking linear combinations of vectors that

lie on the same line passing through the origin will still remain on the given line, because:

α

1
2
3

+ β

2
4
6

 = α

1
2
3

+ 2β

1
2
3

 = (α+ 2β)

1
2
3


for any scalars α and β.

Fact 5. A system of equations Av = b has solutions if and only if b ∈ C(A).

The fact above is simply a restatement of Fact 2. It is simply saying that if there is a solution v
to the system Av = b, then (5) implies that b is a linear combination of the columns of A. So the
column space of a matrix precisely consists of those vectors b which can appear as the right-hand
sides of systems of linear equations Av = b.

For example, does the system: 1 2
2 4
3 6

[x
y

]
=

1
0
0

 (53)

have any solutions? The answer is no, because we have already seen in (52) that the column

space of the matrix in question is the line spanned by the vector

1
2
3

. Since the vector

1
0
0

 is not

on this line (as it is not a multiple of

1
2
3

), then Fact 5 implies that the system (53) has no solutions.

20

Lecture 7 (September 18) Reading: section 3.2

Consider the subspace S ⊂ R3 spanned by the vectors: 1
1
−2

 and

 5
−2
−3

 (54)

These two vectors are not on the same line (passing through the origin) so we conclude that S is a
plane. As such, S is cut out by a single equation in the plane, and it is not hard to see what this
equation is:

S =


xy
z

 such that x+ y + z = 0

 (55)

Indeed, both the vectors in (54) have the property that the sum of their entries is 0. Moreover, any
linear combination of those two vectors has the property that the sum of its entries is 0, and this
allows us to conclude (55). A more linear algebra way to say this is to consider the matrix:

A =
[
1 1 1

]
(the entries of A are precisely the coefficients of x, y and z in the equation of the plane (55)) and
to observe the fact that:

A

 1
1
−2

 =
[
0
]

and A

 5
−2
−3

 =
[
0
]

Moreover, taking appropriate linear combinations of these two equations allows us to conclude that:

A

α
 1

1
−2

+ β

 5
−2
−3

 =
[
0
]

for any scalars α and β. Therefore, the plane S is precisely what people call the nullspace of A, as
in the following definition.

Definition 6. The nullspace of an m× n matrix A is the subspace:

N(A) ⊂ Rn (56)

consisting of those vectors v ∈ Rn such that Av = 0.

Remark. A little quirk concerning our notation: the right-hand side of the equation Av = 0 should

be an m×1 column vector, specifically the zero vector

0
...
0

. People usually abbreviate the zero vector

by using the notation “ 0”, although it is still technically a vector.

21

The fact that the nullspace satisfies the requirements (48) and (49) of a subspace follows from the
easy to prove relations:

Av = 0 and Aw = 0 ⇒ A(v +w) = 0

Av = 0 and α ∈ R ⇒ A(αv) = 0

So computing the nullspace of a matrix A boils down to solving the equation Av = 0. However,
many matrices have the same nullspace. For example, if:

A = LR (57)

where L is an invertible matrix (such as the product of elimination/permutation/diagonal matrices,
hint-hint) then:

N(A) = N(R) (58)

which is essentially saying that:

Av = LRv = 0 is equivalent to Rv = 0

Gauss-Jordan elimination gives us a recipe for writing A in the form (57), where R is in reduced
row echelon form, i.e.:

• the pivots are all 1

• the pivots go to the right as we read the rows from top to bottom

• all the entries above a pivot are zeroes

For example, the following matrix is in reduced row echelon form:

R =

[
1 3 0 7

0 0 1 2

]
(as usual, the pivots are in boxes). A column which has a pivot is called a (unsurprisingly) pivot
column and all other columns are called free columns. In the example of R above, the first and
third are pivot columns, and the second and fourth are free columns. Explicitly, we have:

R


a
b
c
d

 = 0 means that

[
a+ 3b+ 7d
c+ 2d

]
=

[
0
0

]
i.e.

{
a = −3b− 7d

c = −2d

So here’s the catch: for any choice of b and d, the equalities above tell you what a and c have to
be in order for the vector: 

a
b
c
d


22

to lie in the nullspace of R. Thus, b and d are free variables, and they precisely correspond to
the free columns of R. We conclude that the nullspace of R can be explicitly described as:

N(R) =



−3b− 7d

b
−2d
d

 for all b, d real numbers


The set above is simply a plane in 4-dimensional space. If you want to describe this plane as
being generated by two vectors, then all you need to do is to assign values to the free variables. A
reasonable choice is to set (b, d) = (1, 0) or (0, 1), and this implies that:

N(R) is spanned by the vectors


−3
1
0
0

 and


−7
0
−2
1


Therefore, in general, here is the algorithm for computing the nullspace of any m×n matrix A (or
equivalently, for finding all solutions to the system of equations Av = 0):

• Write A in reduced row echelon form, and call the resulting matrix R

• Identify the pivot columns and the free columns of R; the pivot/free variables will be those xi
among x1, ..., xn such that the i–th column of R is a pivot/free column

• The nullspace of A, which coincides with the nullspace of R, is spanned by those vectors
(x1, ..., xn) where a given free variable is 1, all other free variables are 0, and all the pivot
variables are determined by the free variables and the equations:

R

x1

...
xn

 = 0

It is easy to solve for the pivot variables (in terms of the free variables) in the equation above by
back-substitution, precisely because R is in reduced row echelon form.

Lecture 8 (September 23) Reading: section 3.3

We will now put together the ideas of the previous two lectures in order to find the complete (a.k.a.
general) solution v of the system:

Av = b (59)

for any m× n matrix A. First of all, as we have seen in Fact 5, there are no solutions if the m× 1
vector b is not in the column space C(A). So we henceforth assume that b ∈ C(A), which is just
saying that there exists a particular solution:

Avparticular = b (60)

23

This n × 1 vector vparticular is a solution of (59), but it may not be the only one. In fact, for any
other solution v of the original system (59), we may subtract the two equations above and obtain:

A(v − vparticular) = 0

So the difference v − vparticular lies in the nullspace of A. This immediately leads to the following.

Fact 6. The general solution of the system (59) is given by:

vgeneral = vparticular +wgeneral (61)

where:

• vparticular is a particular solution of (59)

• wgeneral is any element of N(A), i.e. the general solution to Awgeneral = 0

The fact above is a general mathematical feature of linear equations. For example, it also holds in
the theory of linear ordinary differential equations, as you can see in 18.03.

Reduced row echelon forms allow you to deal with both bullets in Fact 6 at the same time. Let me
show you how to do this in an example. Consider the system:

2 6 2 2 −1
2 6 1 −1 2
3 9 −1 −9 1



x1

x2

x3

x4

x5

 =

−7
6
−6

 (62)

Let us now apply Gauss-Jordan elimination to the augmented matrix of the system: 2 6 2 2 −1 −7
2 6 1 −1 2 6
3 9 −1 −9 1 −6



 1 3 0 −2 0 −3

0 0 1 3 0 2

0 0 0 0 1 5


The matrix on the right is in reduced row echelon form (the pivots are boxed) and it corresponds
to the system:  1 3 0 −2 0

0 0 1 3 0

0 0 0 0 1



x1

x2

x3

x4

x5

 =

−3
2
5

 (63)

By Fact 3, finding the general solution of the system (62) is equivalent to finding the solution of
the system (63), so let us solve the latter. To do so, let us look at the coefficient matrix:

R =

 1 3 0 −2 0

0 0 1 3 0

0 0 0 0 1


24

and identify the pivot columns (these are columns 1,3,5 in the example at hand) and the free
columns (these are columns 2,4 in the example at hand). Therefore, the pivot variables are x1, x3,
x5 and the free variables are x2, x4. Now we make the following observation:

For any choice of free variables x2, x4 there exists a unique choice

of pivot variables x1, x3, x5 which solve the system (63)

So we keep x2, x4 as arbitrary numbers, and solve for x1, x3, x5 in (63) by back substitution:
x1 + 3x2 − 2x4 = −3

x3 + 3x4 = 2

x5 = 5


x1 = −3− 3x2 + 2x4

x3 = 2− 3x4

x5 = 5

So we conclude that the general solution to the system (63) (which is the same as the general
solution to the system (62), by the very nature of Gauss-Jordan elimination) is:

x1

x2

x3

x4

x5


general

=


−3− 3a+ 2b

a
2− 3b
b
5

 (64)

(we relabeled x2 = a and x4 = b to emphasize the fact that they are arbitrary real numbers).
So what if you didn’t need the general solution of (62) and you were satisfied with a particular
solution? One easy way to get a particular solution is to just plug in a = b = 0, thus obtaining:

x1

x2

x3

x4

x5


particular

=


−3
0
2
0
5

 (65)

You could also have gotten this by setting all the free variables equal to 0 in (63) and solving for
the pivot variables by using back substitution. Similarly, if you subtract the particular solution
(65) from the general solution (64), you get:

x1

x2

x3

x4

x5


general

−


x1

x2

x3

x4

x5


particular

=


−3a+ 2b

a
−3b
b
0

 (66)

The right-hand side is just the general element of the nullspace of the matrix R.

Let us just mention one thing which could have gone wrong in the procedure above, and how to
remedy it. It could have been that the reduced row echelon form of the coefficient matrix had a
full row of zeroes. For example, instead of the system (63) we could have had:

 1 3 0 −2 0

0 0 1 3 0
0 0 0 0 0



x1

x2

x3

x4

x5

 =

−3
2
5

 (67)

25

(when doing elimination, it is customary to put all the zero rows on the very bottom of the matrix,
which we can achieve by suitable row exchanges). It is easy to see that the system above has no
solutions, because equating the third rows of equality (67) to each other would force us to have
0 = 5, which is impossible. However, if the system were instead:

 1 3 0 −2 0

0 0 1 3 0
0 0 0 0 0



x1

x2

x3

x4

x5

 =

−3
2
0

 (68)

then we do have solutions. To find these solutions, just throw out the zero row at the bottom of
the equality (68) and proceed as we did on the previous page. The upshot is, for any matrix R in
reduced row echelon form:

a system Rv = c has solutions if and only if the vector

c has entry 0 corresponding to every full row of zeroes of R

Definition 7. The rank r of a matrix A is equal to the number of its pivot columns.

Here and throughout, the pivot columns of a matrix A refer to those columns where the pivots lie
in the (reduced) row echelon form of A.

If the matrix A is m× n, then the rank satifies the inequality:

r ≤ min(m,n)

since the number of pivots cannot surpass either the number of rows or of columns. We say that:

• A has full row rank if r = m. In this case, the column space of A is as big as possible, i.e.
C(A) = Rm, and the system Av = b have at least one solution v for any b.

• A has full column rank if r = n. In this case, the nullspace of A is as small as possible, i.e.
N(A) = 0, and the system Av = b have at most one solution v for any b.

Lecture 9 (September 25) Reading: section 3.4

Given vectors v1, ...,vn ∈ Rm, recall that the subspace V spanned by these vectors was explained
in Definition 5. Specifically, vectors in the subspace V ⊂ Rm are arbitrary linear combinations:

α1v1 + ...+ αnvn (69)

for various scalars α1, ..., αn. But what if one of the vectors v1, ...,vn is itself a linear combination
of the other vectors? For example, we could have:

vi = β1v1 + ...+ βi−1vi−1 + βi+1vi+1 + ...+ βnvn

26

for some i ∈ {1, ..., n}. Then any linear combination of the form (69) can be written as a linear
combination of the vectors v1, ...,vi−1,vi+1, ...,vn only:

α1v1 + ...+αi−1vi−1 +αi (β1v1 + ...+ βi−1vi−1 + βi+1vi+1 + ...+ βnvn)︸ ︷︷ ︸
vi

+αi+1vi+1 + ...+αnvn =

= (α1 + αiβ1)v1 + ...+ (αi−1 + αiβi−1)vi−1 + (αi+1 + αiβi+1)vi+1 + ...+ (αn + αiβn)vi+1

So we don’t need the vector vi to span the subspace V ⊂ Rm: this subspace is in fact spanned by
the slightly smaller collection of vectors v1, ...,vi−1,vi+1, ...,vn.

Definition 8. Vectors v1, ...,vn ∈ Rm are called (linearly) independent if none of them is a
linear combination of the others. Equivalently, this means that any linear combination is non-zero:

α1v1 + ...+ αnvn 6= 0 (70)

except for the zero combination (namely the one where α1 = ... = αn = 0).

If the vectors v1, ...,vn ∈ Rm are not independent, we call them (linearly) dependent, which
means that there exists a linear combination:

α1v1 + ...+ αnvn = 0 (71)

where not all the α1, ..., αn are 0. For example, if αi 6= 0, then we can rewrite equation (71) as:

vi = −α1

αi
v1 − ...−

αi−1

αi
vi−1 −

αi+1

αi
vi+1 − ...−

αn
αi
vn

We conclude that a collection of vectors is linear dependent precisely when one of them can be
written as a linear combination of the others.

For example, the two vectors: 2
5
1

 and

 1
−3
−1

 (72)

are linearly independent, because otherwise one of them would be a linear combination (i.e. a
multiple) of the other, and this is visibly not true. Geometrically, we can see this because the two
vectors above are not on the same line in space. However, the three vectors:2

5
1

 and

 1
−3
−1

 and

 4
−1
−1

 (73)

are linearly dependent, because the following linear combination is 0:

1 ·

2
5
1

+ 2 ·

 1
−3
−1

− 1 ·

 4
−1
−1

 = 0 (74)

Definition 9. A basis of a vector space V is a collection of independent vectors which span V .

27

For example, both the collection (72) and the collection (73) span the plane:

{2x− 3y + 11z = 0} ⊂ R3 (75)

But only the collection of vectors (72) is a basis, because they are linearly independent. The col-
lection of vectors (73) is not a basis, because each of the three vectors in (73) can be written as
a linear combination of the other two (see (74)). So any of these three vectors is redundant in
spanning the plane (75), and that is why we don’t need all three of them to have a basis.

Remark. A basis of any vector space is not unique. In fact, any collection of two of the three
vectors in (73) form a basis of the subspace (75).

Definition 10. The dimension of a vector space V is the number of vectors in a basis of V .

Implicit in the Definition above is that all bases of a vector space (and there are infinitely many
of them, see the Remark above) have the same number of vectors in them. The abstract notion
of dimension introduced above precisely matches our usual, geometric, notion of dimension: a line
has dimension 1 (it is spanned by a single vector) and a plane has dimension 2 (it is spanned by
two vectors, for example the plane (75) with the basis (72)).

So, practically, how can we tell when a collection of vectors v1, ...,vn is linearly independent? And
if they are not linearly independent, how can we remove some of these vectors, in such a way as to
obtain a basis of the subspace they span? The way to answer both of these questions is to construct
the m× n matrix whose columns are the vectors in question:

A =
[
v1 . . . vn

]
For any vector w =

α1

...
αn

, we have seen that:

Aw = α1v1 + ...+ αnvn (76)

Therefore, the vectors v1, ...,vn are linearly independent if and only if Aw = 0 happens only when
w = 0, or in other words, if N(A) = 0. Conversely, the vectors are dependent precisely when there
exists w 6= 0 such that Aw = 0. So to find a linear combination (76) which is 0, one only needs
to find a non-zero vectorw ∈ N(A), and this can be done by putting A in reduced row echelon form.

If the vectors v1,..., vn are linearly dependent, how to we find a subset of them which are linearly
independent, and thus give a basis of the vector subspace they span? Simple: put A in reduced
row echelon form, identify the pivot columns, and look at the corresponding columns of A. Those
will be a basis. For example, consider the matrix:

A =

2 1 4
5 −3 −1
1 −1 −1

 RREF
 R =

 1 0 1

0 1 2
0 0 0


The pivot columns are columns 1 and 2, so the upshot is that a basis of C(A) consists of the first
two columns of A. This is precisely the basis we found in (72).

28

Fact 7. The rank of the matrix A (i.e. the number of pivot columns) equals the dimension of C(A).

Above, we saw how to find a basis of the vector space spanned by a collection of vectors v1, ...,vn.
But there are other ways to present vector spaces, namely by equations. For example consider:

V = {2x− 2y − 6z − 4t = 5x+ y − 3z + 8t = −3x+ 2y + 7z + 3t = 0} ⊂ R4

Since V is cut out by three equations in four unknowns, it is tempting to believe that V is one-
dimensional. But not so fast! Let’s find a basis of V systematically. The way to do so is to think
of V as the nullspace of the following matrix:

V = N(A) where A =

 2 −2 −6 −4
5 1 −3 8
−3 2 7 3


To describe this nullspace, put the matrix A in reduced row echelon form:

A =

 2 −2 −6 −4
5 1 −3 8
−3 2 7 3

 RREF
 R =

 1 0 −1 1

0 1 2 3
0 0 0 0


Since N(A) = N(R), the nullspace of the matrix R in reduced row echelon form can be described
in terms of pivot variables (x and y) and free variables (z and t):

R


x
y
z
t

 = 0 i.e.

{
x− z + t = 0

y + 2z + 3t = 0

Hence:

V =




z − t
−2z − 3t

z
t

 for any z, t


To find basis vectors of V , just set one of the free variables (in this case, either z or t) equal to 1
and the other one equal to 0: 

1
−2
1
0

 and


−1
−3
0
1


Therefore, V is two-dimensional, hence a plane.

Let us summarize the two ways of thinking about a vector V ⊂ Rm: either as the column space
of a matrix (when you are given a set of vectors which spans V), or as the nullspace of a matrix
(when you are given equations satisfied by V). In either case, analyzing V (i.e. finding a basis and
computing its dimension) is best done by putting the matrix in reduced row echelon form.

29

Remark. If A is a square n×n matrix, the rank always satisfies r ≤ n. We can only have equality,
i.e. r = n, if the columns of A are linearly independent. This is equivalent to the only solution of
Av = 0 being the zero vector v = 0, so the nullspace of A just consists of the zero vector. Moreover:

r = n if and only if A is invertible (77)

Indeed, everything we said in this Remark can be translated as saying that the system Av = b has
a single solution v for any vector b. This solution si precisely v = A−1b.

Lecture 10 (September 27) Reading: section 3.5

To a m× n matrix A, we associated the following subspaces:

the column space C(A) ⊂ Rm

the nullspace N(A) ⊂ Rn

We will now consider two more subspaces corresponding to the matrix A:

the row space C(AT) ⊂ Rn

the left nullspace N(AT) ⊂ Rm

Collectively, the four subspaces above are called the four fundamental subspaces of A. The row
space is just the subspace spanned by the rows of the matrix A (which are the same things as the
columns of the transpose matrix AT). Meanwhile, the left nullspace consists of m× 1 vectors such
that:

AT

 v1

...
vm

 = 0

If you transpose the equation above, then you obtain:[
v1 . . . vm

]
A = 0

This leads to the following description of the left nullspace of a matrix A: it consists of 1 × m
vectors (in other words, row vectors) v such that:

vA = 0 (78)

This equation explains why we call it the “left” nullspace.

Fact 8. If r is the rank of the matrix A (number of pivots), then the four subspaces have dimensions:

dimC(A) = r dimC(AT) = r

dimN(A) = n− r dimN(AT) = m− r

30

Let’s try and justify the fact above. The fact that the column space has dimension equal to r is
just a consequence of the fact that the pivot columns form a basis of C(A). The fact that the
nullspace has dimension n − r follows from the fact a choice of basis vectors of N(A) is given by
setting all the free variables equal to 0 except for one of them; the number of such basis vectors
is the same as the number of free variables, namely n minus the number of pivot variables, i.e. n−r.

Let’s justify the fact that the row space of A also has dimension r. To see this, let us bring the
matrix in reduced row echelon form R (row operations do not change the row space). Of the m
rows of R, exactly r of them will be non-zero (the rows which have pivots) and m− r of them will
be zero (the rows which do not have pivots). Therefore, the dimension of the row space is exactly r,
since pivot rows are linearly independent. This implies that dimC(AT) = r, which also implies that
dimN(AT) = m−r, just by repeating the argument in the previous paragraph for A replaced by AT .

The reason why we introduced the row space and the left nullspace is that they provide complements
for the nullspace and column space, respectively. To understand what this means, suppose you had
two vector subspaces:

V,W ⊂ Rn

of dimensions k and n− k, respectively. If V and W are sufficiently general, then their intersection
only consists of the zero vector, in which case we call V and W complementary subspaces. This
notion only applies to when the dimensions of V andW add up to n, the dimension of ambient space.

Example 2. Two different lines passing through the origin are complementary subspaces of R2,
and any plane and line which only intersect at the origin are complementary subspaces of R3.

However, two planes passing through the origin can never be complementary subspaces in R3, be-
cause their intersection always contains a line (moreover, the dimensions add up to 2 + 2 = 4 6= 3).

Here is a fact we will understand more closely in upcoming weeks:

The row space and nullspace of A are complementary subspaces of Rn

The column space and left nullspace of A are complementary subspaces of Rm

for any m× n matrix A. But practically, how do we compute the four fundamental subspaces of a
matrix? For example, how do we find a basis of each of them? For the column space and nullspace
of A, we saw that the key role was played by its reduced row echelon form R:

• the column space C(A) is spanned by the pivot columns of A (i.e. those columns where the
reduced row echelon form R has its pivots)

• the nullspace N(A) is spanned by the vectors v =

x1

...
xn

 where all the free variables except

for one take the value 0, and the pivot variables take values prescribed by Rv = 0

31

So how do we compute the spaces C(AT) and N(AT)? The direct way is to just put AT in reduced
row echelon form, and apply the previous two bullets. But quite often, the problem naturally deals
with the reduced row echelon form of the matrix A itself:

A
RREF
 R (79)

By analogy with (58), we have:

C(AT) = C(RT) (80)

which happens because row operations do not change the row space of a matrix. Therefore, a basis
for C(AT) is given by the pivot rows of the matrix R.

What about the left nullspace N(AT) in terms of the reduced row echelon form (79)? As we have
seen a few lectures ago, Gauss-Jordan elimination involves multiplying the matrix A on the left:

KA = R

by an invertible matrix K. By (78), a row vector v lies in N(AT) precisely means:

0 = vA = vK−1R (81)

where v is an 1×m vector. The reduced row echelon matrix R will have the form, say:
1 ∗ ∗ 0 ∗ ∗ 0

0 0 0 1 ∗ ∗ 0

0 0 0 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0


and 0 = wR happens if and only if:

w =
[
0 0 0 ∗ ∗

]
(namely the only non-zero entries of w are those corresponding to the zero rows of R). So the
vectors v that can satisfy (81) are those of the form:

v = wK =
[
0 0 0 ∗ ∗

]
K

We conclude that a basis for N(AT) is given by the rows of the square matrix K which correspond
to the zero rows of the reduced row echelon form matrix R.

Lecture 11 (September 30) Reading: section 4.1

Today we will start discussing orthogonality (i.e.perpendicularity). First of all, we know that two
vectors v,w ∈ Rn are orthogonal precisely when their dot product is 0:

v ⊥ w ⇔ v ·w = vTw = 0 (82)

If two vectors v and w are orthogonal, then we have the Pythagorean theorem:

||v +w||2 = ||v||2 + ||w||2

32

(proof: ||v +w||2 = (v +w) · (v +w) = v · v + v ·w +w · v +w ·w = ||v||2 + ||w||2).

But now we have the necessary language to talk about more than just individual vectors in Rn,
and so we can generalize the concept of orthogonality to subspaces:

Definition 11. Two subspaces V,W ⊂ Rn are called orthogonal, which will be denoted by V ⊥W ,
if we have v ⊥ w for any two vectors v ∈ V and w ∈W .

Note that two subspaces can be orthogonal only if dimV + dimW ≤ n. Otherwise, the two sub-
spaces would intersect in a non-zero vector v ∈ V ∩W (think about two planes passing through
the origin in R3: they always contain a whole line) and it would be impossible for v ⊥ v.

Let us now consider an m × n matrix A, with the four fundamental subspaces considered in the
previous Subsection. We have the following facts:

C(A) ⊥ N(AT) (83)

N(A) ⊥ C(AT) (84)

Let’s prove these formulas: for (83), we need to take an arbitrary vector a ∈ C(A) and an arbitrary
vector v ∈ N(AT) and show that they are perpendicular. By the very definition of the column
space and the left nullspace, we have:

a = Aw for some vector w and ATv = 0 ⇔ vTA = 0

Then we have:

v · a = vTa = vTAw = 0w = 0 ⇒ a ⊥ v

Similarly, let’s prove (84): we need to take an arbitrary w ∈ N(A) and an arbitrary b ∈ C(AT)
and show that they are perpendicular. By the very definition of nullspace and row space, we have:

Aw = 0 and b = ATv for some vector v

Then we have:
bT = vTA ⇒ bTw = vTAw = vT 0 = 0 ⇒ b ⊥ w

(alternatively, you can think of statement (84) as simply restating (83) for AT instead of A). More-
over, we saw in Fact 8 that the spaces in (83) are of complementary dimension, and thus they have
the maximal total dimension that orthogonal subspaces can have. Ditto for (84). This is a special
case of the following notion:

Definition 12. Given a subspace V ⊂ Rn, its orthogonal complement is the subspace V ⊥

consisting of all vectors in Rn perpendicular to V . In other words:

V ⊥ =
{
w ∈ Rn such that v ⊥ w for all v ∈ V

}
(85)

33

Note that (85) is just a set. To show that it is a subspace, you would need to prove that:

v ⊥ w1 and v ⊥ w2 for all v ∈ V ⇒ v ⊥ (α1w1 + α2w2) for all v ∈ V

for any scalars α1, α2. The implication above can be easily proved by resorting to the dot product
interpretation of perpendicularity. So combining Fact 8 with (83), (84) precisely says that:

the left nullspace is the orthogonal complement of the column space

the row space is the orthogonal complement of the nullspace

This is sometimes called the Fundamental Theorem of Linear Algebra . Let’s see an example:

A =

[
1 0 3 −1

0 1 −2 1

]
(I chose a matrix which is already in reduced row echelon form to save us the work of Gauss-Jordan
elimination). Then the row space of A is:

C(AT) = spanned by


1
0
3
−1

 and


0
1
−2
1

 (86)

(we write the rows vertically to keep with our convention that vectors should be written as columns).
To compute a basis for the nullspace of A, you must first note that the pivot columns of the matrix
are 1 and 2, while the free columns are 3 and 4. Basis vectors for the nullspace are given by setting
all the free variables equal to 0, except for one which is set equal to 1:

N(A) = spanned by


a
b
1
0

 and


c
d
0
1


To solve for a, b, c, d, you must use the property that the vectors above are killed by A:

A


a
b
1
0

 = A


c
d
0
1

 = 0 ⇒


a+ 3 = 0

b− 2 = 0

c− 1 = 0

d+ 1 = 0

so we conclude that:

N(A) = spanned by


−3
2
1
0

 and


1
−1
0
1

 (87)

It is easy to see that the two basis vectors in (86) are orthogonal to each of the two basis vectors
in (87), thus establishing the fact that the row space and nullspace are orthogonal subspaces.

34

The fundamental theorem of linear algebra says that the four fundamental subspaces of a matrix
are pairwise orthogonal complements. Here’s why we like this setup: if you have two complemetary
subspaces V,W ⊂ Rn (as defined in Lecture 10) then any vector a ∈ Rn can be written as:

a = v +w where v ∈ V and w ∈W (88)

Moreover, v and w with this property are unique, and they are called the components of the
vector a in the complementary subspaces V and W , respectively. So for example, letting V and W
be the nullspace and row space of an m × n matrix, then we conclude that any vector in Rn can
be written uniquely as a linear combination of the rows of A plus a vector killed by A.

Lecture 12 (October 4) Reading: section 4.2

In the special case when V,W are complementary orthogonal subspaces of Rn (i.e. V = W⊥, or

equivalently, W = V ⊥), the decomposition (88) takes on a more geometric meaning. In this case,
v and w are none other than the projections of a onto the subspaces V and W , as in the following:

Definition 13. Given a vector b ∈ Rn and a linear subspace V ⊂ Rn, the orthogonal projection
of b onto V is the unique vector:

p = projV b ∈ V
such that (b− p) ⊥ V . Put differently, p is the closest vector in V to b.

Intuitively, suppose you want to measure a quantity, which is represented by a vector p in a sub-
space V ⊂ Rn (for example, the collection of electric currents through n pieces of wire, which
are constrained to live in a subspace of Rn by Kirchoff’s law). However, your measurement will
probably have an error, and you might get a value b outside of V . Then your best guess for
the actual value p ∈ V is to set it equal to the orthogonal projection of b on V , since this is the
closest vector in V to the measured value b. That is also why the vector e = b−p is called the error.

Let us work out formulas for the projection of a vector b =

b1...
bn

. The easiest case is when V is

one dimensional, i.e. the line spanned by a vector a =

a1

...
an

. Then the orthogonal projection p

must be a multiple of this vector, so we are looking for:

p = λa such that (b− λa) ⊥ a

Using the dot product interpretation of perpendicularity, we need:

0 = (b− λa) · a ⇒ λ =
a · b
a · a

=
aTb

aTa

So the formula for the projection of b onto the line spanned by a is:

projab = a
aTb

aTa︸ ︷︷ ︸
this is a scalar

(89)

35

Here’s a sanity check: assume a = ei is the unit vector on the i–th axis. Then formula (89) reads:

projeib = eibi (90)

so the projection only remembers the i–th component of the vector b. It is easy to see that the
operation (90) can be presented as a matrix multiplying the vector b, specifically:

Pib = eibi where Pi =


... ... 0
... ... 0
0 0 1 0 0
... ... 0
... ... 0

 (91)

with the unique 1 being at the intersection of row i and column i. Any projection onto a line can
be described by a similar matrix, specifically:

Pab = a
aTb

aTa
where Pa =

aaT

aTa
(92)

Indeed, since a is an n× 1 vector, the numerator of Pa is an n× n matrix, and the denominator is
a 1× 1 matrix, i.e. a scalar. This all fits into the following principle:

Fact 9. For any subspace V ⊂ Rn, there exists an n× n matrix PV such that:

projV b = PV b (93)

for any vector b ∈ Rn.

So all orthogonal projections are given by left multiplication with a suitable matrix (unoriginally
called a “projection matrix”). The task for us now is to compute the matrix corresponding to a
given projection, and we will do it in the special case when:

V = C(A)

for an n×m matrix A. In fact, this does not represent any restriction on the subspace V , since any
subspace can be written as the column space of a suitably chosen matrix: just take basis vectors
of the subspace and put them next to each other in a matrix. So given b ∈ Rn, we are looking for:

p ∈ C(A) such that (b− p) ⊥ C(A)

But p ∈ C(A) precisely means:
p = Av (94)

for some m× 1 vector v. Moreover, the condition (b− p) ⊥ C(A) is equivalent to:

AT (b− p) = 0 (95)

as a product of matrices. Indeed, the i–th row of (95) is precisely the dot product ai · (b − p),
where ai is the i–th column of A, and its vanishing means precisely that b− p is perpendicular to
ai. Combining (94) with (95) gives us:

AT (b−Av) = 0 ⇒ ATAv = ATb

36

Therefore, we may solve for v = (ATA)−1ATb, and by combining this with (94) we obtain the
following formula for the projection of the vector b onto the subspace C(A):

projC(A)b = A(ATA)−1ATb (96)

Therefore, we conclude that the n× n projection matrix corresponding to the subspace C(A) is:

PC(A) = A(ATA)−1AT (97)

If the case m = 1, i.e. A is a single n × 1 vector, formula (97) is equivalent to (92). The m ×m
matrix S = ATA which appears in (97) is symmetric, but we need it to be invertible in order for
the formulas presented above to hold. We have the following fact:

if the columns of A are independent, then S = ATA is invertible (98)

Note that the equality:
(ATA)−1 6= A−1(AT)−1

does not hold in general, because when A is a rectangular matrix, its inverse is not well-defined.

Let’s do an example. Suppose we are in n = 3 dimensional space, and we want to compute the
projection onto the plane V spanned by the vectors: 2

0
−1

 and

−1
1
0

 (99)

First of all, let’s make sure that these vectors are linearly independent (if one were a linear combi-
nation of the other, we could just throw it out). Then, we put the vectors together in a matrix:

A =

 2 −1
0 1
−1 0


As we saw in (97), an important role is played by the symmetric matrix:

S = ATA =

[
2 0 −1
−1 1 0

] 2 −1
0 1
−1 0

 =

[
5 −2
−2 2

]

whose inverse (this matrix is invertible because the vectors (99) are independent) is given by:

S−1 =
1

6

[
2 2
2 5

]
Then formula (97) for the projection operator onto the subspace spanned by the vectors (99) is:

PV =

 2 −1
0 1
−1 0

 1

6

[
2 2
2 5

] [
2 0 −1
−1 1 0

]
=

1

6

 5 −1 −2
−1 5 −2
−2 −2 2

 (100)

37

We conclude that the projection of any vector

xy
z

 onto the gives 2-dimensional plane is:

PV

xy
z

 =
1

6

 5x− y − 2z
−x+ 5y − 2z
−2x− 2y + 2z


Remark. Projection matrices are special in that they satisfy the equation:

PV PV = PV

for any subspace V . This corresponds to the geometric fact that if you projection of a projection is
the projection itself. Check that this equation holds for the specific example (100).

Lecture 13 (October 7) Reading: section 4.3

One major computational application of projections is least squares approximation, which we will
now delve into. Mathematically, the problem involves a system of equations for given A and b:

Av = b (101)

which does not have any solutions, because the number of equations is greater than the number of
variables (mathematically, think of A as an m × n matrix with m > n). Therefore, the task is to
find a value of v which makes Av as close as possible to b. In other words, the error vector:

e = b−Av

should be made as “small” as possible. Since we are dealing with vectors, “small” means that the
length of the vector should be as small as possible. Therefore, the problem is to find v such that:

||b−Av|| (102)

is as small as possible, for given A and b. But what does this mean geometrically? As v ranges
over all possible vectors, Av ranges over the column space C(A). If b were already in C(A), then
the equation (101) could be satisfied with no error. But in general, b /∈ C(A), in which case:

||b−Av|| ≥
(

distance from b to the subspace C(A)
)

= ||b− p||

where p is the orthogonal projection of b onto the subspace C(A). Therefore, finding v which
minimizes the quantity (102) actually involves two steps:

• find the orthogonal projection p of b onto the subspace C(A)

• solve the equation Av = p (which can be done, since p ∈ C(A))

38

We already know the answer to the first question from (97):

p = A(ATA)−1ATb

The answer to the second question is also manifest, because a solution to the boxed equation is:

v = (ATA)−1ATb (103)

Recall the fact (98): in order for the matrix ATA to be invertible and for the formula above to
make sense, we need the matrix A to have independent columns. This can always be arranged by
removing some dependent columns from the matrix A: for example, if the last column of A is a
linear combination of the other ones, then we can simply remove the last column of A and the last
entry of v, and the task of approximating equation (101) as well as possible remains the same.

Remark. You could also have arrived at formula (103) from calculus. Specifically, it’s obvious that
||b−Av|| is minimum when ||b−Av||2 is minimum. The usual formulas give us:

||b−Av||2 = (b−Av)T (b−Av) = bTb− 2(Av)Tb+ (Av)T (Av) = bTb− 2vTATb+ vTATAv

Now, the latter quantity is minimum when its derivative with respect to v vanishes (there is a
mathematical notion of taking derivative with respect to a vector of variables, and it behaves just
like derivative with respect to a single variable), which explicitly states that:

0 =
∂(bTb− 2vTATb+ vTATAv)

∂v
= −2ATb+ 2ATAv

Solving the equation above for v gives precisely (103).

Let’s do a concrete example. Find numbers x, y, z such that the vector:

x

1
1
0

+ y

0
1
1

+ z

1
2
1

 is as close to

1
2
3

 as possible (104)

A straightforward application of the analysis above would have us set A =

1 0 1
1 1 2
0 1 1

 and apply

formula (103). But the columns of A are not independent: in fact, the third column is the sum of
the first two. This is reflected in the fact that equation (104) reads:

x

1
1
0

+ y

0
1
1

+ z

1
1
0

+

0
1
1

 = (x+ z)

1
1
0

+ (y + z)

0
1
1


Since x, y, z can be chosen arbitrarily, the problem us equivalent to finding a and b such that:

the vector a

1
1
0

+ b

0
1
1

 is as close to

1
2
3

 as possible

39

In matrix form, this is translated as:1 0
1 1
0 1

[a
b

]
−

1
2
3

 is as small as possible (105)

Now the columns are independent, so we can apply formula (103). We have:

ATA =

[
1 1 0
0 1 1

]1 0
1 1
0 1

 =

[
2 1
1 2

]
⇒ (ATA)−1 =

1

3

[
2 −1
−1 2

]

and so (103) implies that the difference (105) is minimized for:

[
a
b

]
=

1

3

[
2 −1
−1 2

] [
1 1 0
0 1 1

]1
2
3

 =
1

3

[
2 1 −1
−1 1 2

]1
2
3

 =

[
1
3
7
3

]

Here is perhaps the standard application of least squares approximation, which will explain its name.
Suppose you have a graph which seeks to represent a time-dependent quantity y(t). You measure
this quantity at times t1, ..., tm and get values y1, ..., ym. Mark the data points (t1, y1),...,(tm, ym)
on a graph, as follows (say m = 5 data points in the picture below):

1 2 3 4 5

1

2

3

4

The goal is to “fit” a straight line L between these data points as closely as possible. Mathematically,
the word “closely” means that the following condition must be satisfied:

the sum of squares of the vertical distances from the data points to L is minimum

which explains the term “least squares”. So how do we do find this best fit line? To choose a line is
the same thing as to choose two numbers a and b, so that the equation of the line is y(t) = a+ bt.
Then the sum of squares that we need to minimize is the quantity:

(y1 − a− bt1)2 + ...+ (ym − a− btm)2 (106)

where t1, ..., tm and y1, ..., ym are given to you by your experiment. How to convert this into a linear
algebra problem? If the line were to pass precisely through our data points, this would require the

40

following system of equations to be satisfied (where a and b are the unknowns):
a+ bt1 = y1

...

a+ btm = ym

or, equivalently

1 t1
...

...
1 tm

[a
b

]
=

 y1

...
ym


In practice, we will not be able to solve this system on the nose, but the condition that the quantity
(106) is minimized is exactly the condition that the square of (102) is minimized, for:

A =

1 t1
...

...
1 tm

 and B =

 y1

...
ym


We have:

ATA =

[
1 . . . 1
t1 . . . tm

] 1 t1
... ...
1 tm

 =

[
m t1 + ...+ tm

t1 + ...+ tm t21 + ...+ t2m

]
⇒

⇒ (ATA)−1 =
1

m(t21 + ...+ t2m)− (t1 + ...+ tm)2

[
t21 + ...+ t2m −t1 − ...− tm
−t1 − ...− tm m

]
So formula (103) tells us that the choice of a and b which gives the best straight line fit is:

[
a
b

]
=

1

m(t21 + ...+ t2m)− (t1 + ...+ tm)2

[
t21 + ...+ t2m −t1 − ...− tm
−t1 − ...− tm m

] [
1 . . . 1
t1 . . . tm

] y1

...
ym


and therefore:

[
a
b

]
=

1

m(t21 + ...+ t2m)− (t1 + ...+ tm)2

[∑n
i=1 ti(ti − t1) . . .

∑n
i=1 ti(ti − tm)∑n

i=1(t1 − ti) . . .
∑n

i=1(tm − ti)

] y1

...
ym


The fact that the fraction in the formula above is non-zero is a consequence of the Cauchy-Schwarz
inequality, which states that m(t21 + ...+ t2m) > (t1 + ...+ tm)2 if t1, ..., tm are all distinct numbers.

Lecture 14 (October 9) Reading: section 4.4

Question: when are two planes V and W orthogonal? Answer: when any two vectors v ∈ V and
w ∈ W are orthogonal. Of course, it is hard to check this property for any vectors, but it suffices
to check it for all vectors v1, ...,vk and w1, ...,wl which form bases of V and W , respectively:

V ⊥W ⇔ vTi ·wj = 0 for all i ∈ {1, ..., k}, j ∈ {1, ..., l} (107)

Since there are k basis vectors of V and l basis vectors of W , there are k · l conditions to check
above. You can replace this with a single condition, if you put the v’s together in a matrix A and
the w’s together in a matrix B:

A =
[
v1 . . . vk

]
B =

[
w1 . . . wl

]
41

Then V = C(A) and W = C(B), and condition (107) reads:

V ⊥W ⇔ V TW = 0 (108)

The following is a related notion, which applies to bases of a single vector space V .

Definition 14. A collection of non-zero vectors q1,..., qn are called orthogonal if:

qi ⊥ qj or, equivalenty qTi qj = 0 for all 1 ≤ i 6= j ≤ n (109)

It is called orthonormal if the vectors are both orthogonal and normalized to:

||qi|| = 1 or, equivalenty qTi qi = 1 for all 1 ≤ i ≤ n (110)

Orthogonal vectors are always linearly independent (so a basis of the vector space they span).

The standard basis e1, ..., en of Rn (where ei = (0, ..., 0, 1, 0, ..., 0) with the 1 on the i–th spot) is
orthonormal. In fact, the notion of orthonormality seeks to generalize this behavior to other bases.

There are n2 conditions (109)–(110), so there are n2 properties to check in order to show that a
collection of n vectors are orthogonal. As before, this can be packaged into a single matrix equality,
if we consider the m× n matrix (assume q1, ..., qn ∈ Rm):

Q =
[
q1 . . . qn

]
Then the orthogonality property (109) precisely states that:

QTQ =


d1 0 . . . 0
0 d2 . . . 0
...

...
. . .

...
0 0 . . . dn

 (111)

where di = ||qi||2. Therefore, the orthonormality property (109)–(110) precisely states that:

QTQ = In (112)

In the particular case when m = n, we have:

Definition 15. A square matrix Q is called orthogonal if (112) holds, i.e. if QT = Q−1.

Examples of orthogonal matrices include all permutation matrices:

P =

0 1 0
0 0 1
1 0 0


and the rotation matrices:

Q =

[
cos θ − sin θ
sin θ cos θ

]
(113)

42

The columns of the matrix Q are the usual unit vectors in R2, rotated by an angle θ:

-0.4 -0.2 0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

and they are orthonormal because (sin θ)2 + (cos θ)2 = 1. Both examples above share a feature,
which is actually common of all orthogonal matrices: they preserve dot products, lengths and
perpendicularity of vectors:

if Q is orthogonal, then (Qv)T (Qw) = vTw (114)

for all vectors v andw. The reason for this is simply that (Qv)T (Qw) = vTQTQw = vT Iw = vTw.
Therefore, as a consequence, we have:

if v ⊥ w then Qv ⊥ Qw (115)

and:
||Qv|| = ||v|| (116)

Now let’s return to the projection formula (97), which is generally cumbersome because we need to
invert the matrix ATA. In the particular case when A = Q has orthonormal columns (i.e. we have
an orthonormal basis of the vector space we are projecting upon), the projection formula is nicer:

PC(Q) = QQT (117)

because QTQ = I. Similarly, in this case the solution to the least squares problem (103) sim-
plifies to v = QTb. In words: if you’re projecting onto the subspace with general basis vectors
v1, ...,vn, then you need to apply the more complicated formula (97) for A =

[
v1|...|vn

]
. But if you

know that your subspace has a basis consisting of orthonormal vectors q1, ..., qn, then you may ap-
ply the simpler formula (117) for Q =

[
q1|...|qn

]
. So it pays to have orthonormal bases of subspaces.

Fortunately, not only do all subspaces have orthonormal bases, there’s an explicit algorithm which
allows you to construct one of these from any given basis. This is called the Gram-Schmidt
process and here’s how it goes: you start from a general collection of linearly independent vectors
v1, ...,vn and the goal is to “make” them orthonormal. You are allowed to modify the individual
vectors vi by rescaling them and adding linear combinations of the other vectors:

vi α1v1 + ...+ αivi + ...+ αnvn with αi 6= 0

since these operations do not change the subspace spanned by v1, ...,vn. Start by renormalizing v1

so that it has length 1:

first step: v1 q1 =
v1

||v1||

43

Then modify v2 so that it is perpendicular to q1, and then renormalize it to have length 1:

second step: v2 w2 = v2 − projq1
v2 and w2 q2 =

w2

||w2||

Then modify v3 so that it is perpendicular to q1 and q2, and then renormalize it to have length 1:

third step: v3 w3 = v3 − projq1
v3 − projq2

v3 and w3 q3 =
w3

||w3||

... so far and so forth, until the last step where we modify vn so that it is perpendicular to q1, q2,

..., qn−1 and then renormalize it to have length 1:

last step: vn wn = vn − projq1
vn − ...− projqn−1

vn and wn qn =
wn

||wn||

At the end of this procedure, all the vectors q1, ..., qn are orthogonal to each other by construction,
and they all have length 1. This is because at each step, we subtract from every vi its projection
onto the already constructed vectors q1, ..., qi−1. What remains will be orthogonal to these vectors.
The various projections that one must calculate in this process, namely projqjvi can be computed

using formula (89) (which is even simpler in our case, since the denominator of (89) is equal to 1).

Let’s see what Gram-Schmidt tells us about the relation between the matrix:

A =
[
v1 . . . vn

]
and Q =

[
q1 . . . qn

]
where v1, ...,vn are the input vectors and q1, ..., qn are the output vectors of Gram-Schmidt. At
each step, we are modifying the i–th column of a matrix by subtracting from it a linear combina-
tion of the previous columns, and then multiplying it by a scalar. This is doing the same thing for
columns as row operations were doing for rows. Therefore, it shouldn’t surprise you that:

• Adding the j–th column times λ to the i–th column of A is achieved by multiplying the latter
on the right with an elimination matrix:

A AE
(λ)
ji where E

(λ)
ji =


1 0 0 0 0
0 1 0 λ 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


The entry λ is on the j–th row and i–th column (in the formula above, i = 4 and j = 2).

• Multiplying the i–th column of A by the scalar λ is achieved by multiplying the latter on the
right with a diagonal matrix:

A AD
(λ)
i where D

(λ)
i =


1 0 0 0 0
0 λ 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


The entry λ is on i–th row (in the formula above, i = 2).

44

Compare these with the operations you learned in Lecture 2 when discussing Gaussian elimination
and LU factorizations: the upshot is that while row operations correspond to multiplication on the
left, column operations correspond to multiplication on the right. Therefore, we conclude that the
connection between the input and the output of Gram-Schmidt is:

Q = A D
(µ1)
1︸ ︷︷ ︸

first step

E
(λ12)
12 D

(µ2)
2︸ ︷︷ ︸

second step

E
(λ13)
13 E

(λ23)
23 D

(µ3)
3︸ ︷︷ ︸

third step

... E
(λ1n)
1n ...E

(λn−1,n)
n−1,n D(µn)

n︸ ︷︷ ︸
last step

(118)

where the scalars µi and λij are determined by the orthonomality requirement at every stage of
Gram-Schmidt. By moving all the E’s and D’s in the other side of the equation, we obtain:

A = QD

(
1
µn

)
n E

(−λn−1,n)
n−1,n ...E

(−λ1n)
1n ...D

(
1
µ3

)
3 E

(−λ23)
23 E

(−λ13)
13 D

(
1
µ2

)
2 E

(−λ12)
12 D

(
1
µ1

)
1

If we multiply the D and E matrices together, we will obtain an upper triangular matrix R. Hence:

Fact 10. Any matrix A with linearly independent columns can be uniquely written as:

A = QR (119)

where the columns of Q are orthonormal and R is an upper triangular square matrix:

R =


∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 ∗ ∗
0 0 0 ∗


Lecture 15 (October 11) Reading: section 8.1

We will now introduce the ultimate level of abstraction in our course, which will finally explain the
meaning of matrix multiplication. Recall n–dimensional space, which as a set is given by:

Rn =


x1

...
xn

 where x1, ..., xn ∈ R


Definition 16. A linear transformation is a function:

φ : Rn → Rm (120)

which respects the vector space structures of Rn and Rm, namely addition and scalar multiplication:

φ(v + v′) = φ(v) + φ(v′) and φ(α · v) = α · φ(v) (121)

for any vectors v,v′ ∈ Rn and any scalar α ∈ R.

Let us consider a linear transformation φ as in (120), and express it in terms of the basis:

ej =



0
...
1
...
0


45

(whose only entry 1 is on the j–th row). The value φ(ej) will be a vector in Rm, and therefore a
linear combination of the basis vectors ei. This means that there exist constants aij ∈ R such that:

φ(ej) =
m∑
i=1

aijei ∀ j ∈ {1, ..., n} (122)

But once you know the numbers aij , the linear transformation φ is uniquely determined! Indeed,

since any vector v =

v1

...
vn

 ∈ Rn is a linear combination of the ei’s, formulas (121) and (122) imply:

φ(v) = φ(v1e1 + ...+ vnen) =
n∑
j=1

vjφ(ej) =
m∑
i=1

n∑
j=1

aijvjei

which completely determines φ(v) for any v. In column matrix form, this relation reads:

φ

v1

...
vn

 =

 a11v1 + ...+ a1nvn
...

am1v1 + ...+ amnvn

 (123)

Does this look familiar? Indeed, φ acts on column vectors precisely like the matrix:

A =

a11 . . . a1n

...
. . .

...
am1 . . . amn

 (124)

multiplies vectors. We conclude the following:

Fact 11. There is a one-to-one correspondence between linear transformations and matrices, in
that the matrix (124) represents the linear transformation (123). In symbols, this means:

φ(v) = Av (125)

for all vectors v.

Let us discuss the 2× 2 case in detail, by showing which geometrically relevant linear transforma-
tions φ : R2 → R2 correspond to which matrices:

•
[
0 1
1 0

]
is reflection in the line {x = y}

•
[
1 0
0 0

]
is projection onto the x-axis

•
[
λ 0
0 µ

]
is a scaling by a factor of λ in the x direction and by a factor of µ in the y direction

46

•
[
cos θ − sin θ
sin θ cos θ

]
is counter-clockwise rotation by an angle of θ around the origin

•
[
1 c
0 1

]
is a shearing parallel to the x axis

As you can see from these examples, linear transformations send lines to lines and geometric shapes
of a certain kind (triangles, quadrilaterals, ellipses) to shapes of the same kind. Another big class
of linear transformations are projections, and formula (96) basically states that the function:

projV : Rn → Rn

which projects points onto a given subspace V corresponds to the matrix:

A(ATA)−1AT

where the columns of the n×m matrix A are given by any basis of V .

Note that composition of linear transformations corresponds to multiplication of matrices. In
symbols, if the linear transformations φ1, φ2 are given by matrices A1, A2, respectively, then:

the transformation φ1 ◦ φ2 corresponds to the matrix A1A2 (126)

For example, rotation by π
2 degrees followed by a horizontal shearing is given by the matrix:[

1 1
0 1

] [
0 −1
1 0

]
=

[
1 −1
1 0

]
Take now m = n. If we have a function φ : Rn → Rn, we can talk about its inverse φ−1 : Rn → Rn:
the latter is connected to the former by the condition that if φ(v) = w, then φ−1(w) = v. It may
not surprise you that if the linear transformation φ corresponds to a square matrix A, then:

the transformation φ−1 corresponds to the matrix A−1 (127)

The function φ has an inverse precisely if and only if the matrix A is invertible.

The nullspace and column space of a matrix A also have an interpretation in terms of the corre-
sponding linear transformation φ : Rn → Rm:

N(A) = Ker φ and C(A) = Im φ (128)

where the kernel Ker φ is the set of vectors v ∈ Rn such that φ(v) = 0, and the image Im φ is the
set of vectors w ∈ Rm which can be written as φ(v) for some vector v ∈ Rn.

Lecture 16 (October 16) Reading: section 8.2

In our last lecture, we said that a linear transformation φ : Rn → Rm corresponds to an m × n
matrix A. However, this is not completely precise: while a linear transformation φ is an intrinsic

47

geometric notion (namely a rule that sends points to points and lines to lines) the matrix A is
simply a representation of it. For example, let the linear transformation:

φ : R2 → R2 be counterclockwise rotation by 30◦

The matrix A =
1

2

[√
3 −1

1
√

3

]
is a representation of this rotation in the usual (x, y) system of

coordinates, i.e. in the usual basis e1 =

[
1
0

]
, e2 =

[
0
1

]
of R2. Indeed, all that this is saying is that:

φ(x · e1 + y · e2) = x · a1 + y · a2 =

(
x
√

3

2
− y

2

)
· e1 +

(
x

2
+
y
√

3

2

)
· e2 (129)

where a1 and a2 are the columns of A. But now suppose you wanted to express this transformation
in a different reference frame, i.e. changing the basis from e1, e2 to v1 = 2e1, v2 = e1 − e2. When
you change basis from e’s to v’s, you can always change back, i.e. express the e’s in terms of v’s:
in our case we have e1 = v1

2 , e2 = v1
2 − v2. We may plug these formulas into (129) and we get:

φ(x · v1 + y · v2) = φ(x · 2e1 + y · (e1 − e2)) = φ((2x+ y) · e1 − y · e2)
(129)
= (130)[

(2x+ y)
√

3

2
+
y

2

]
e1+

[
2x+ y

2
− y
√

3

2

]
e2 =

[
(2x+ y)

√
3

2
+
y

2

]
v1

2
+

[
2x+ y

2
− y
√

3

2

](v1

2
− v2

)

=

[
x ·
√

3 + 1

2
+ y · 1

2

]
· v1 +

[
x · (−1) + y ·

√
3− 1

2

]
· v2

So in terms of the new basis v1,v2, the linear transformation φ is represented by the matrix:

B =

[√
3+1
2

1
2

−1
√

3−1
2

]

The connection between this matrix and the original matrix A is precisely:

B = V −1AV (131)

where V =

[
2 1
0 −1

]
is the change of basis matrix from the basis e1, e2 to the basis v1,v2 (specifi-

cally, it is the matrix whose columns are the vectors v1 and v2).

So we have seen that the matrices A and B connected by (131) describe the same linear transfor-
mation, albeit in different bases. Let us explain the general principle for any linear transformation:

φ : Rn → Rn

which is represented by the n× n matrix A =

a11 . . . a1n

...
. . .

...
an1 . . . ann

 in the standard basis:

φ(x1e1 + ...+ xnen) = (a11x1 + ...+ a1nxn)e1 + ...+ (an1x1 + ...+ annxn)en (132)

48

If you wish to express the linear transformation φ in a different basis v1, ...,vn, then you need to
consider the conjugate matrix:

B = V −1AV =

b11 . . . b1n
...

. . .
...

bn1 . . . bnn

 where V =
[
v1 . . . vn

]
In terms of the new basis, formula (132) may be rewritten as:

φ(x1v1 + ...+ xnvn) = (b11x1 + ...+ b1nxn)v1 + ...+ (bn1x1 + ...+ bnnxn)vn (133)

Example 3. The projection onto the vector

[
1
1

]
in R2 is represented by the matrix:

A =

[
1
1

]([
1 1

] [1
1

])−1 [
1 1

]
=

1

2

[
1 1
1 1

]
in the usual e1, e2 basis of the plane. But suppose you wanted to represent the same linear trans-
formation in the basis v1 = e1 + e2, v2 = e1 − e2 instead. The way you would do this is encode
the change of basis into the matrix:

V =

[
1 1
1 −1

]
Then formula (131) says that the given projection linear transformation is represented by the matrix:

B = V −1AV =

(
−1

2

)[
−1 −1
−1 1

]
1

2

[
1 1
1 1

] [
1 1
1 −1

]
=

[
1 0
0 0

]
It’s not a coincidence that the answer is such a simple matrix. Indeed, all that the formula for B
is saying is that:

proj(1,1)(x · v1 + y · v2) = x · v1

Geometrically, this says that projection sends v1 to itself (i.e. leaves it unchanged, which makes
sense given that v1 is precisely the vector being projected upon) and sends v2 to 0 (which makes
sense given that v1 ⊥ v2).

Finally, let us consider a general linear transformation:

φ : Rn → Rm

which is represented by the m× n matrix A =

a11 . . . a1n

...
. . .

...
am1 . . . amn

 in the standard basis:

φ(x1e1 + ...+ xnen) = (a11x1 + ...+ a1nxn)e1 + ...+ (am1x1 + ...+ amnxn)em

Since Rm and Rn are (in general) different vector spaces, it will often make sense to change the
basis in the input Rn independently of the change of basis in the output Rm:

e1, ..., en v1, ...,vn are bases of Rn

e1, ..., em w1, ...,wm are bases of Rm

49

If you wish to express the linear transformation φ in these new bases, consider the matrices:

V =
[
v1 . . . vn

]
and W =

[
w1 . . . wm

]
Then the linear transformation φ is represented by the matrix:

B = W−1AV =

 b11 . . . b1n
...

. . .
...

bm1 . . . bmn

 (134)

in these new bases, by which we mean that:

φ(x1v1 + ...+ xnvn) = (b11x1 + ...+ b1nxn)w1 + ...+ (bm1x1 + ...+ bmnxn)wm (135)

The ability to change bases gives us a lot of freedom in studying matrices. Basically, you can always
change bases in order to simplify any given matrix, and how far you go depends on the problem at
hand. For example, in the square n×n case, almost any matrix is conjugate to a diagonal matrix:

A = V


d1 0 . . . 0
0 d2 . . . 0
...

...
. . .

...
0 0 . . . dn

V −1 (136)

In future weeks, we will see the meaning of the numbers d1, ..., dn (the eigenvalues of A) and of
the columns of the matrix V (the eigenvectors of A). We will also learn how to eliminate the word
“almost” in the previous paragraph, by studying Jordan normal forms.

Lecture 17 (October 18) Reading: section 5.1

Consider any linear transformation φ : Rn → Rn, which is represented by an n×n square matrix A.

Definition 17. The determinant of the square matrix A is the number:

detA (137)

defined as the factor by which the linear transformation φ scales the n–dimensional volumes of
regions in Rn (the determinant can be negative if φ switches left-handedness to right-handedness).

Let’s take for instance the linear transformations of R2 considered immediately after Fact 11. Two-
dimensional volume just means area. Any reflection preserves the magnitude of areas but switches
handedness, hence:

det

[
0 1
1 0

]
= −1 (138)

Projections flatten regions R ⊂ R2 to line segments, which have area 0, so therefore:

det

[
1 0
0 0

]
= 0 (139)

50

Scaling transformations increase areas by the product of the scaling factors, and therefore:

det

[
λ 0
0 µ

]
= λµ (140)

Finally, rotations and shearings preserve areas, so we have:

det

[
cos θ − sin θ
sin θ cos θ

]
= 1

det

[
1 c
0 1

]
= 1 (141)

In general, the determinant of a 2× 2 matrix is given by the following formula:

det

[
a b
c d

]
= ad− bc (142)

and indeed, the determinant plays an important role in the formula for the inverse of a 2×2 matrix:[
a b
c d

]−1

=
1

ad− bc

[
d −b
−c a

]
(143)

But before we work out general means for computing determinants, let us spell out two key facts.

Fact 12. For any n× n matrices A and B, we have:

detAB = (detA)(detB) (144)

Let’s give a quick proof of this fact: if A and B correspond to linear transformations φ and ψ,
respectively, then we have seen in (126) that AB corresponds to the composition φ ◦ ψ of the two
transformations. Then (144) is simply saying that the rate at which φ ◦ ψ scales volumes is equal
to the product of rates at which φ and ψ individually scale volumes. Indeed, if you take any region
R ⊂ Rn and assume that:{

ψ takes R to some region R′

φ takes R′ to some region R′′
⇒ φ ◦ ψ takes R to the region R′′

With this in mind, we have:

LHS of (144) =
vol R′′

vol R
=

vol R′′

vol R′
· vol R′

vol R
= RHS of (144)

which proves (144). Caveat: it is not true that det(A+B) = detA+ detB, in general!

Fact 13. Row operations have the following effect on determinants:

• adding a multiple of one row to another leaves the determinant unchanged

51

• exchanging two rows multiplies the determinant by −1

• multiplying a single row by λ has the effect of multiplying the determinant by λ

The analogous properties still hold if the word “row” is replaced by “column”.

This fact actually follows from Fact 12, as we will now proceed to show. Recall from Lecture 2
that performing the three kinds of row operations above on a matrix A is precisely achieved by
multiplying A on the left by elimination/permutation/diagonal matrices. Then the statements in
the bullets of Fact 13 become equivalent to:

detE
(λ)
ij A = detA which happens because detE

(λ)
ij = 1

detPijA = −detA which happens because detPij = −1

detD
(λ)
i A = λ · detA which happens because detD

(λ)
i = λ

The fact that Pij , D
(λ)
i , E

(λ)
ij have determinants −1, λ, 1 respectively, is simply a natural general-

ization of (138), (140), (141). Fact 13 has the following important consequence:

If A is a square matrix, then detA = ±(product of pivots of REF(A)) (145)

which means that a computationally efficient way to compute the determinant of a matrix is to just
put it in row echelon form and multiply its pivots. Indeed, Fact 13 implies that detA = ±detU ,
where U is the row echelon form of A, and the sign ± is simply (−1) raised to the number of row
exchanges required by Gaussian elimination. So it remains to show that detU is the product of its
pivots, which by applying the third bullet of Fact 13, is equivalent to showing that a upper trian-
gular matrix with all 1’s on the diagonal has determinant 1. This happens because such an upper
diagonal matrix can be transformed into the unit matrix I by row operations (as in Gauss-Jordan
elimination) and the unit matrix has determinant 1.

Another way to restate the discussion in the previous paragraph is to remember that any square
matrix A has a factorization of the form:

PA = LDU

where L and U are lower/upper triangular with all 1’s on the diagonal, and D is a diagonal matrix.
Applying determinant and Fact 12 to the formula above gives us;

(detP)(detA) = (detL)(detD)(detU)

and then (145) follows from the fact that detP = (−1) raised to the number of row exhanges,
while detL = detU = 1 and detD = product of pivots. The latter formulas are instances of the
following general formulas for the determinants of diagonal and triangular matrices:

det


d1 0 . . . 0
∗ d1 . . . 0
...

...
. . .

...
∗ ∗ . . . dn

 = det


d1 0 . . . 0
0 d1 . . . 0
...

...
. . .

...
0 0 . . . dn

 = det


d1 ∗ . . . ∗
0 d1 . . . ∗
...

...
. . .

...
0 0 . . . dn

 = d1d2...dn (146)

52

which are justified as in the paragraph after (145).

If a square matrix A has a full row of zeroes (or a full column of zeroes, for that matter), then its
determinant is 0: this is simply a consequence of (145) and the fact that one of the pivots would
be 0 if we had a full row of zeroes. But we also have the following more general property:

If the rows/columns of A are linearly dependent, then detA = 0 (147)

Indeed, if the rows were dependent, then one of them (say row i) would be a linear combination of
the other ones. But then by successively subtracting multiples of the other rows from row i, which
we know do not change the determinant, we would arrive at a matrix with a full row of zeroes.
Since such a matrix would have a zero pivot, it has determinant 0, thus establishing (147).

We know exactly when a matrix has linearly dependent rows/columns: precisely when it is singular,
i.e. not invertible. Therefore, (147) can be restated as:

Fact 14. A square matrix A is non-singular (invertible) if and only if detA 6= 0.

Indeed, if the matrix A had an inverse A−1, then applying determinant and Fact 12 to the formula
AA−1 = I would imply that:

(detA)(detA−1) = 1 ⇒ detA−1 =
1

detA
(148)

This immediately implies that the determinant of an invertible matrix cannot be 0. Finally, we
give one more fact for the road:

Fact 15. For any square matrix A, we have detA = detAT .

If Q is an orthogonal matrix (see Definition 15), i.e. QT = Q−1, then (148) and Fact 15 imply that
its determinant can only be 1 or −1.

Lecture 18 (October 21) Reading: section 5.2

Formula (145) computes the determinant of a square matrix from its pivots, which is just what
a computer would use. But there is a different, the so-called “big formula” for the determinant,
which is very important for understanding the theory and properties of the determinant.

Let’s start from the following observation: determinants are linear functions of each row separately.
As a formula, this means that for any numbers xij and a1, ..., an, b1, ..., bn, we have:

det



x11 x12 . . . x1n

...
...

. . .
...

a1 + b1 a2 + b2 . . . an + bn
...

...
. . .

...
xn1 xn2 . . . xnn

 = det



x11 x12 . . . x1n

...
...

. . .
...

a1 a2 . . . an
...

...
. . .

...
xn1 xn2 . . . xnn

+det



x11 x12 . . . x1n

...
...

. . .
...

b1 b2 . . . bn
...

...
. . .

...
xn1 xn2 . . . xnn


(149)

53

Very importantly, the matrix on the left is NOT the sum of the matrices on the right. Instead, all
three matrices have the same elements on all rows except for the i–th one (that’s the one where
the a’s and b’s are in the formula), and i could be anything. Moreover, we have:

det



x11 x12 . . . x1n

...
...

. . .
...

λa1 λa2 . . . λan
...

...
. . .

...
xn1 xn2 . . . xnn

 = λ det



x11 x12 . . . x1n

...
...

. . .
...

a1 a2 . . . an
...

...
. . .

...
xn1 xn2 . . . xnn

 (150)

Remark. Properties (149) and (150) also hold if we replace rows by columns (so the matrices in
the left and right-hand sides only differ on a single column) which makes sense given the fact that
determinant is left unchanged by transposing matrices.

Here’s an argument for (149). You can perform row exchanges in order to make i = n, i.e. the
three matrices only differ on the last row. Perform Gaussian elimination on the three matrices in
(149). It’s not hard to see that the first n− 1 rows will look the same in all three matrices, so they
will all have the same pivots p1, ..., pn−1. When you finally get to do Gaussian elimination on the
n–th row, denote the pivots on the n–th rows of the matrices in the right-hand side of (149) by α
and β, respectively. Then a little thought shows that the pivot on the n–th row of the matrix in
the left-hand side of (149) has to be α+ β. Then formula (145) implies that (149) boils down to:

±p1...pn−1(α+ β) = ±p1...pn−1α± p1...pn−1β

which is definitely a true statement. Formula (150) is proved by a similar argument.

By applying formula (150) to all the rows of an n× n matrix, we get:

det(λA) = λn · detA (151)

which you could also get by applying (144) to the matrix B =


λ 0 . . . 0
0 λ . . . 0
...

...
. . .

...
0 0 . . . λ

.

Let’s return to computing determinants. Since det(A + B) 6= detA + detB in general, we must
resort to formula (149) in order to break up a general matrix into simpler, more manageable pieces.
Let’s take the 2× 2 case for illustration. By applying (149) to the first row, we have:

det

[
a11 a12

a21 a22

]
= det

[
a11 0
a21 a22

]
+ det

[
0 a12

a21 a22

]
Then apply (149) to the second rows of each of the matrices in the right-hand side:

det

[
a11 a12

a21 a22

]
= det

[
a11 0
a21 0

]
+ det

[
a11 0
0 a22

]
+ det

[
0 a12

a21 0

]
+ det

[
0 a12

0 a22

]
The first and fourth determinants in the right-hand side vanish because of (147), since they have
full 0 columns. Therefore, we are left with:

det

[
a11 a12

a21 a22

]
= det

[
a11 0
0 a22

]
+ det

[
0 a12

a21 0

]
= a11a22 − a12a21

54

Indeed, the first underlined matrix is already in row echelon form, so its determinant is the product
of the two pivots. Meanwhile, the second underlined matrix would be in row echelon form as soon
as we exchange the two rows, which is responsible for the fact that its determinant has a −1 sign
in front. Thus, we have proved formula (142).

In general, the procedure of successively applying (149) to the rows of the matrix leaves us with
a sum of many determinants, all of which have a single non-zero entry on each row. Of all those
determinants, the ones which have a full zero column will vanish, which means that the only
surviving determinants are the ones where the non-zero elements are on both different rows and
different columns. For example, in the 3× 3 case, we have:

det

a11 a12 a13

a21 a22 a23

a31 a32 a33

 = det

a11 0 0
0 a22 0
0 0 a33

+ det

 0 a12 0
0 0 a23

a31 0 0

+ det

 0 0 a13

a21 0 0
0 a32 0


+ det

a11 0 0
0 0 a23

0 a32 0

+ det

 0 a12 0
a21 0 0
0 0 a33

+ det

 0 0 a13

0 a22 0
a31 0 0


There are as many surviving determinants as possible permutations of the rows, and indeed, all
of these determinants can be transformed into diagonal matrices by an appropriate row exchange.
This leads to the following formula:

det

a11 a12 a13

a21 a22 a23

a31 a32 a33

 = a11a22a33 +a12a23a31 +a13a21a32−a11a23a32−a12a21a33−a13a22a31 (152)

In general, the procedure gives a formula for the determinant as a sum over all permutations:

{σ(1), ..., σ(n)} of {1, ..., n}

and we have the following big formula for the determinant:

det


a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

an1 an2 ... ann

 =

permutations∑
{σ(1),...,σ(n)}

(−1)sgn σa1σ(1)a2σ(2)...anσ(n) (153)

The number sgn σ is called the signature of the permutation σ: it is the minimum number of
successive (e.g. the i-th and i + 1-th) row exchanges that you need to apply to the permutation
matrix corresponding to σ, in order to turn it into the unit matrix.

Formula (153) is nice and explicit, but awful in practice. The number of summands for an n × n
matrix is equal to the number of permutations of {1, ..., n}, which is n! = 1 · 2 · ... ·n. But there are
matrices, particularly those which have a lot of zeroes, for which this formula is quite manageable.
For example, if the i–th row only has a single non-zero entry (say on the j–th column) then we get:

det



...
. . .

...
...

...
. . .

...
ai−1,1 . . . ai−1,j−1 ai−1,j ai−1,j+1 . . . ai−1,n

0 . . . 0 aij 0 . . . 0
ai+1,1 . . . ai+1,j−1 ai+1,j ai+1,j+1 . . . ai+1,n

...
. . .

...
...

...
. . .

...

 =

55

=

permutations∑
{σ(1),...,σ(i−1),σ(i+1),...,σ(n)}

of {1,...,j−1,j+1,...,n}

(−1)signaturea1σ(1)...ai−1,σ(i−1)aijai+1,σ(i+1)...anσ(n)

= aij · (−1)i+j det


...

. . .
...

...
. . .

...
ai−1,1 . . . ai−1,j−1 ai−1,j+1 . . . ai−1,n

ai+1,1 . . . ai+1,j−1 ai+1,j+1 . . . ai+1,n

...
. . .

...
...

. . .
...


︸ ︷︷ ︸

cofactor Cij

(154)

This is because the only terms which give a non-zero contribution to (153) are those with σ(i) = j.
So computing an n×n determinant whose only non-zero entry on row i is on column j boils down to
computing the determinant of the (n−1)×(n−1) matrix obtained by removing row i and column j.

Formula (154) leads to a general way of computing determinants, known as cofactor expansion.

Explicitly, for a matrix A =

a11 . . . a1n

...
. . .

...
an1 . . . ann

 and any row i, we have:

detA
(149)
=

n∑
j=1

det



...
. . .

...
...

...
. . .

...
ai−1,1 . . . ai−1,j−1 ai−1,j ai−1,j+1 . . . ai−1,n

0 . . . 0 aij 0 . . . 0
ai+1,1 . . . ai+1,j−1 ai+1,j ai+1,j+1 . . . ai+1,n

...
. . .

...
...

...
. . .

...


We may invoke formula (154) to compute the right-hand side, and we obtain:

detA = ai1 · Ci1 + ...+ ain · Cin (155)

where Cij is called the (i, j)–cofactor:

Cij = (−1)i+j detMij (156)

where Mij is the matrix obtained by removing row i and column j from A.

Remark. The cofactor expansion can also be done along columns instead of rows:

detA = a1j · C1j + ...+ anj · Cnj (157)

for all j ∈ {1, ..., n}.

Let’s do an example, by computing the determinant of the matrix:

A =


7 0 3 −1
0 4 3 0
2 0 0 1
0 2 0 1


56

This matrix has a lot of zeroes, so it’s perfect for cofactor expansion. To keep your work as light as
possible, pick a row with a lot of zeroes. For example, cofactor expansion for the third row gives:

detA = 2 · (−1)3+1 det

0 3 −1
4 3 0
2 0 1

+ 1 · (−1)3+4 det

7 0 3
0 4 3
0 2 0


We can compute the determinants above by cofactor expansion for the first and third rows, respec-
tively:

detA = 2 · (−1)3+1

(
3 · (−1)1+2 det

[
4 0
2 1

]
+ (−1) · (−1)1+3 det

[
4 3
2 0

])
+

+1 · (−1)3+4 · 2 · (−1)3+2 det

[
7 3
0 3

]
= 2((−3) · 4 + (−1) · (−6)) + 2 · 21 = 30

Just to do a sanity check, let’s also compute the determinant of A by cofactor expansion along a
column (say the second column):

detA = 4 · (−1)2+2 det

7 3 −1
2 0 1
0 0 1

+ 2 · (−1)2+4 det

7 3 −1
0 3 0
2 0 1


Now let’s compute the determinants above by cofactor expansion for the second and third column,
respectively:

detA = 4 · (−1)2+2

(
3 · (−1)1+2 det

[
2 1
0 1

])
+ 2 · (−1)2+4

(
(−1) · (−1)1+3 det

[
0 3
2 0

]
+

+ 1 · (−1)3+3 det

[
7 3
0 3

])
= 4 · (−3) · 2 + 2((−1) · (−6) + 1 · 21) = 30

Lecture 19 (October 23) Reading: section 5.3

Remember systems of linear equations like Av = b? We learned how to solve these through
Gaussian elimination, but in the case when A is a square n×n matrix, there is another way called
Cramer’s rule. In this setup, you have as many equations as unknowns, so you (almost always)
expect there to be a single solution. The phrase “almost always” should be interpreted to mean
“when A is invertible”, and in this case we have:

Av = b has the unique solution v = A−1b (158)

So the task has become to compute the inverse matrix A−1. But if you look back at formula (155),
the inverse matrix is almost staring back at you! Explicitly, consider the matrix:

X whose entries are xij = Cji

and Cij are the cofactors (156). Then formula (155) precisely says that:

detA = ai1x1i + ...+ ainxni

for all i ∈ {1, ..., n}. Together with the fact that for all i 6= j:

0 = ai1x1j + ...+ ainxnj

57

(proof: the right-hand side of the formula above is precisely the right-hand side of (155) for the
matrix A′ obtained from A by copying the i–row into of the j–th row; since A′ has two equal rows,
we have detA′ = 0) we conclude that:

detA 0 . . . 0
0 detA . . . 0
...

...
. . .

...
0 0 . . . detA

 = AX

and therefore:

A−1 =
X

detA
(159)

In other words, the (i, j) entry of A−1 is given by:

A−1
ij =

Cji
detA

(160)

Note that you need to put the (j, i)–cofactor in the formula above, not the (i, j)–cofactor!
So now let’s write a formula for the solution of the equation:

A

v1

...
vn

 =

b1...
bn

 (161)

By (158), we must have:
vi = A−1

i1 · b1 + ...+A−1
in · bn

By formula (160), we therefore have:

vi =
C1i · b1 + ...+ Cni · bn

detA

If you stare the right-hand side of the formula above, you will notice that it’s precisely the column
cofactor expansion (157) of the matrix:

Bi obtained by replacing the i–th column of A by b (162)

Therefore, we get Cramer’s rule, which says that the solution to the system (161) has:

v1 =
detB1

detA
, ..., vn =

detBn
detA

(163)

This formula is particularly good when solving small systems of equations, like 3× 3 ones:1 −2 0
1 0 −3
2 0 −5

v1

v2

v3

 =

0
4
1


By (163), the solution is:

v1 =

det

0 −2 0
4 0 −3
1 0 −5


det

1 −2 0
1 0 −3
2 0 −5

 v2 =

det

1 0 0
1 4 −3
2 1 −5


det

1 −2 0
1 0 −3
2 0 −5

 v3 =

det

1 −2 0
1 0 4
2 0 1


det

1 −2 0
1 0 −3
2 0 −5


58

The 3×3 determinants above can be computed either by cofactor expansion (155), (157) (preferably
along a row or column with many zeroes) or even by applying the brute force formula (152). In
any case, we obtain:

v1 = −17 v2 = −17

2
v3 = −7

As a final applcation of determinants, let us discuss about cross products. Remember when I said
that it does not make sense to multiply vectors and get a vector, bar a rather particular exception
for three dimensional vectors? Well, here is that exception. If you have vectors:

v =

v1

v2

v3

 and w =

w1

w2

w3


in three-dimensional space, their cross product is defined as the following vector in three dimen-
sional space:

v ×w = det

i v1 w1

j v2 w2

k v3 w3

 (164)

where i = e1, j = e2,k = e3 are the standard unit vectors on the axes of three-dimensional space.
You can compute the determinant in (164) by cofactor expansion on the first column, and obtain:

v ×w = i · (v2w3 − v3w2) + j · (v3w1 − v1w3) + k · (v1w2 − v2w1) =

v2w3 − v3w2

v3w1 − v1w3

v1w2 − v2w1

 (165)

The determinant definition of the cross-product has a few advantages: it is easy to memorize, and it
manifestly explains why the cross product is 0 if the vectors v and w are on the same line (becuse
then columns 2 and 3 of the determinant (164) would be multiples of each other). Moreover,
because switching two columns flips the sign of the determinant, we conclude that:

v ×w = −(w × v)

Moreover, if we have a third vector u, then we could dot it with the cross product v ×w and get
a number. This number is actually quite nice, namely:

u · (v ×w) = det

u1 v1 w1

u2 v2 w2

u3 v3 w3

 (166)

Geometrically, the determinant in the right-hand side of (166) is the volume of the parallelogram
whose edges are given by the vectors u, v, w. If u lies in the plane spanned by v and w, then the
volume of this parallelogram is 0. This is manifestly apparent from (166), since a matrix where one
of the columns is a linear combination of the others has determinant 0.

Lecture 20 (October 25) Reading: section 6.1

Just like in the last few classes, we’re sticking with square matrices, so let A be an n × n matrix.
The goal is to make the matrix “as simple as possible”. Some of the simplest square matrices out

59

there are diagonal matrices:

diagd1,...,dn =


d1 0 . . . 0
0 d2 . . . 0
...

...
. . .

...
0 0 . . . dn

 (167)

Indeed, the linear transformation Rn → Rn that corresponds to diagd1,...,dn simply scales along the
unit vectors e1, ..., en of the coordinate axes (specifically, it scales by a factor of di along the i–th
coordinate axis of Rn). In particular, we have det(diagd1,...,dn) = d1...dn, which reflects the fact
that our linear transformation scales volumes by a factor equal to d1...dn.

Definition 18. A matrix is called diagonalizable if it is conjugate to a diagonal matrix, i.e.:

A = V · diagd1,...,dn · V
−1 (168)

for some invertible n× n matrix V , and some numbers d1, ..., dn.

The property (168) means that the linear transformation Rn → Rn that corresponds to A scales
by a factor of di in the direction of the vector vi, where vi is the i–th column of V . Therefore, a
diagonalizable matrix is diagonal in some basis of Rn.

Remark. Almost all n × n matrices are diagonalizable, and next week we will see what one can
say about those matrices which are not.

Suppose you knew that the matrix A is diagonalizable, but you didn’t know the specific numbers
di and the matrix V . You could reconstruct them from the notion of eigenvalues and eigenvectors:

Definition 19. Given a n× n matrix A, a non-zero vector v ∈ Rn is called an eigenvector if:

Av = λv (169)

for some number λ called an eigenvalue.

Indeed, v is an eigenvector of A with corresponding eigenvalue λ if the linear transformation cor-
responding to A scales by a factor of λ in the direction of the vector v. This story is very closely
connected with (168): if the matrix A is equal to V diagd1,...,dnV

−1, then all the di’s are eigenvalues
of A and the corresponding eigenvectors are the columns of V .

So how many eigenvalues/eigenvectors are there? It’s easy to see that if v is an eigenvector, then
so is any multiple of v, so a better question would be “how many linearly independent eigenvectors
are there”? Well, from the equation (169) we obtain:

(A− λI)v = 0

Since v is to be non-zero, this implies that the matrix A− λI is to be singular (i.e. not invertible).
Therefore, Fact 14 implies that:

det(A− λI) = 0 (170)

60

for any eigenvalue λ of A. Conversely, any number λ for which (170) holds is an eigenvalue of A
(try to think of an argument). This leads us to the following:

Definition 20. The characteristic polynomial of A is:

p(λ) = det(A− λI) (171)

as a function of the variable λ. The roots (i.e. those values λ for which p(λ) = 0) of the charac-
teristic polynomial are the eigenvalues of A.

Although not very practical, you could in theory compute the characteristic polynomial by applying
the big formula (153) for the determinant:

p(λ) = det


a11 − λ a12 . . . a1n

a21 a22 − λ . . . a2n

...
...

. . .
...

an1 an2 . . . ann − λ

 =

permutations∑
{σ(1),...,σ(n)}

(−1)sgn σa′1σ(1)a
′
2σ(2)...a

′
nσ(n)

where a′ij = aij if i 6= j and a′ii = aii−λ. Since every summand in the right-hand side is a product of
n numbers a′ij for various i and j, no summand can contain more than n factors of λ. Moreover, the
only summand which contains exactly n factors of λ is a′11a

′
22...a

′
nn = (a11−λ)(a22−λ)...(ann−λ).

Therefore, the characteristic polynomial has degree n in λ and its top degree coefficient is (−1)n:

p(λ) = (−1)nλn + αn−1λ
n−1...+ α1λ+ α0

The coefficients αn−1,...,α0 depend on the entries of the matrix A. For example:

αn−1 = (−1)n−1 · tr A (172)

where:
tr A = a11 + a22 + ...+ an−1,n−1 + ann (173)

is called the trace of the matrix A. Clearly:

α0 = detA (174)

is just the determinant of A (this is just saying that the value of the characteristic polynomial at
λ = 0 is the determinant of A, which is obvious given the definition (171)).

Fact 16. The sum of the eigenvalues of a matrix A is equal to the trace of A.

The product of the eigenvalues of a matrix A is the determinant of A.

As an exercise, compute the eigenvalues of the matrix:

A =

[
2 1
5 2

]
(175)

61

First let us form the characteristic polynomial:

p(λ) = det(A− λI) = det

[
2− λ 1

5 2− λ

]
= (2− λ)(2− λ)− 5 · 1 = λ2 − 4λ− 1

The eigenvalues of A are the roots of this polynomial, which you can get by the quadratic formula:

λ =
4±
√

42 + 4

2
= 2±

√
5 ⇒

{
λ1 = 2 +

√
5

λ2 = 2−
√

5

In general, because the eigenvalues of a 2× 2 matrix are the solutions of a quadratic equation, you
should expect to encounter square roots in their formulas. As we have seen in the example above,
in the 2× 2 case, one can deduce the formula for the characteristic polynomial from the facts that:

• it is quadratic and its leading coefficient is 1

• its linear term is minus the trace of the matrix (172)

• its constant term is the determinant of a matrix (174)

So the characteristic polynomial of the matrix

[
a b
c d

]
is:

p(λ) = λ2 − λ(a+ d) + (ad− bc) (176)

For matrices of size 3 × 3 and higher, the characteristic polynomial is of order 3 and higher, so it
is a bit more complicated to write it down and a lot more complicated to find its roots.

Remark. In general, it is NOT true that the eigenvalues of A+B are the sums of the eigenvalues
of A and B, nor are the eigenvalues of AB the products of the eigenvalues of A and B.

Now suppose that you know λ is an eigenvalue of a square matrix A; how do you find an eigenvector
v such that Av = λv? You already have the tools for this: just recast the eigenvector relation as
(A−λI)v = 0, so all you need to do is to find v 6= 0 in the nullspace of the singular matrix A−λI.
For example, in the case of the matrix (175), let us look for an eigenvector v corresponding to the
eigenvalue λ = 2 +

√
5. To this end, let us construct the matrix:

A− λI =

[
−
√

5 1

5 −
√

5

]
and we will simply pick a vector v ∈ N(A−λI). Remember that, in order to compute the nullspace
of a matrix, the way to go is to put it in reduced row echelon form:[

−
√

5 1

5 −
√

5

]

[
−
√

5 1
0 0

]

[
1 − 1√

5

0 0

]

62

Therefore, an eigenvector v =

[
v1

v2

]
can be obtained by solving the equation:

[
1 − 1√

5

0 0

] [
v1

v2

]
= 0 ⇔ v1 −

v2√
5

= 0

So one particular choice of eigenvector can be obtained by setting the free variable v2 equal to 1,
and solving for the pivot variable from the equation above: v1 = 1√

5
. Therefore, an eigenvector of

the matrix A corresponding to the eigenvalue λ = 2 +
√

5 is:

v =

[
1√
5

1

]
Any multiple of v would be an equally good eigenvector.

Lecture 21 (October 28) Reading: section 6.2

In the previous class, we saw how to compute the eigenvalues and eigenvectors of an n× n matrix
A. Specifically, the eigenvalues are the roots of the characteristic polynomial:

p(λ) = det(A− λI) = 0

Since the characteristic polynomial has degree n, it has at most n roots, therefore there are at most
n eigenvalues. But there could be fewer than n eigenvalues, for example the matrix:

A =

[
5 −3
0 5

]
has characteristic polynomial

p(λ) = (λ− 5)2

which has λ = 5 as a double root. In this case, we say that λ = 5 has algebraic multiplicity 2,
or that the matrix A has repeated (or equal) eigenvalues. In other words, we still think of A has
having two eigenvalues, but they are both equal to 5. With this in mind, we have:

Fact 17. An n × n matrix has exactly n eigenvalues, although some could be repeated, and some
could be complex numbers (more on the latter later).

So what can we say about eigenvectors? First of all, eigenvectors corresponding to different eigen-
values are always linearly independent. For example, if:

Av1 = λ1v1 and Av2 = λ2v2

for λ1 6= λ2, then there can be no linear relation between v1 and v2 (argument: if there were
such a relation, then we would have v1 = cv2 for some scalar c, and applying A would give us
λ1v1 = Av1 = cAv2 = cλ2v2 = λ2v1, which would force λ1 = λ2). So the best case is when
the n eigenvalues of the matrix are all distinct numbers, because then there would exist n linearly
independent eigenvectors, one for each eigenvalue. These eigenvectors would form a basis of Rn.

63

Fact 18. An n× n matrix A with n distinct eigenvalues λ1, ..., λn is diagonalizable. Specifically:

A = V


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λn

V −1 (177)

where V is the matrix whose columns are v1, ...,vn, the eigenvectors corresponding to λ1, ..., λn.

A couple of remarks: if the eigenvalues are all distinct, then the eigenvectors are really only defined
up to constant multiple. So the matrix V in (177) is not unique, but it depends on a choice of con-
stant multiples of the eigenvectors. Secondly, the fact that the eigenvectors are linearly independent
(which was discussed right before Fact 18) is crucial, because otherwise the matrix V would have
rank < n and would not be invertible and the right-hand side of formula (177) would not make sense.

In practice, how to diagonalize (i.e. to write as in (177)) a matrix A? As explained in Fact 18, the
way to do so is to find the eigenvalues and eigenvectors of A. Say we’re looking at the matrix:

A =

[
1 1
1 0

]
(178)

To find its eigenvalues, construct the characteristic polynomial:

p(λ) = λ2 − λ · tr A+ detA = λ2 − λ− 1

(here we’re applying the shortcut formula (176), which only holds in the 2× 2 case). Its roots are:

λ1 =
1 +
√

5

2
and λ2 =

1−
√

5

2

Let us now compute eigenvectors corresponding to these two eigenvalues:

Av1 =
1 +
√

5

2
v1 ⇒

(
A− 1 +

√
5

2
I

)
v1 = 0 ⇒ v1 ∈ N

(
A− 1 +

√
5

2
I

)

Av2 =
1−
√

5

2
v2 ⇒

(
A− 1−

√
5

2
I

)
v2 = 0 ⇒ v2 ∈ N

(
A− 1−

√
5

2
I

)

To work out the nullspace of A− 1+
√

5
2 I, put it in row echelon form:

A− 1 +
√

5

2
I =

[
1−
√

5
2 1

1 −1−
√

5
2

]

[
1−
√

5
2 1
0 0

]

So the eigenvector v1 =

[
x
y

]
needs to satisfy:

[
1−
√

5
2 1
0 0

] [
x
y

]
= 0 ⇔ y +

1−
√

5

2
x = 0

64

and therefore we may take v1 =

[
1

−1+
√

5
2

]
. Similarly, v2 =

[
1

−1−
√

5
2

]
, so we have:

A = V

[
1+
√

5
2 0

0 1−
√

5
2

]
V −1 where V =

[
1 1

−1+
√

5
2

−1−
√

5
2

]
(179)

So we’ve done all this work, but you might ask: what are applications of diagonalization? Well,
here’s a classic one. Let’s say you want to obtain an explicit formula for the Lucas numbers (close
cousins of the Fibonacci numbers considered in the textbook), which are defined by the conditions:

L0 = 2, L1 = 1, and the recursive relation Ln+1 = Ln + Ln−1 (180)

for all n ≥ 1. One way would be to consider the vectors:

an =

[
Ln+1

Ln

]
and to observe that the conditions (180) can be interpreted as the matrix identities:

a0 =

[
1
2

]
and an =

[
1 1
1 0

]
an−1

for all n ≥ 2. You can iterate the latter formula and obtain:

an = Aan−1 = A2an−2 = ... = Ana0 = An
[
1
2

]
(181)

where A is the matrix (178). So computing a formula for the Lucas numbers boils down to having
an effective method for explicitly computing the matrix powers An for all natural numbers n.
This is tricky for a general matrix A, but quite straightforward if you kow how to diagonalize A.
Specifically, because A can be written in the form (179), we have:

A2 = V

[
1+
√

5
2 0

0 1−
√

5
2

]
V −1V︸ ︷︷ ︸

I

[
1+
√

5
2 0

0 1−
√

5
2

]
V −1 = V

(1+
√

5
2

)2
0

0
(

1−
√

5
2

)2

V −1

A3 = V

[
1+
√

5
2 0

0 1−
√

5
2

]
V −1V︸ ︷︷ ︸

I

[
1+
√

5
2 0

0 1−
√

5
2

]
V −1V︸ ︷︷ ︸

I

[
1+
√

5
2 0

0 1−
√

5
2

]
V −1 = V

(1+
√

5
2

)3
0

0
(

1−
√

5
2

)3

V −1

. . .

AnV = V

(1+
√

5
2

)n
0

0
(

1−
√

5
2

)n
V −1 for all integers n

We could plug these formulas in (181) and obtain:

[
Ln+1

Ln

]
= an = V

(1+
√

5
2

)n
0

0
(

1−
√

5
2

)n
V −1

[
1
2

]
=

65

=

[
1 1

−1+
√

5
2

−1−
√

5
2

](1+
√

5
2

)n
0

0
(

1−
√

5
2

)n
 1

−
√

5

[
−1−

√
5

2 −1
1−
√

5
2 1

] [
1
2

]
I’ll let you have all the fun in multiplying the matrices on the bottom row above. When you do so,
you will finally obtain the formula for the Lucas numbers:

Ln =

(
1 +
√

5

2

)n
+

(
1−
√

5

2

)n
(182)

The example we have just seen generalizes to the following principle:

if A = V

λ1 . . . 0
...

. . .
...

0 . . . λn

V −1 then Ak = V

λ
k
1 . . . 0
...

. . .
...

0 . . . λkn

V −1 (183)

This is computationally very important, because if you want to compute the k–th power of an
n× n matrix efficiently for some really large number k, it is faster to just diagonalize A and apply
formula (183). Also, this formula allows us to describe the behavior of Ak as k → ∞: its growth
rate is dominated by the size of the k–th power of the largest eigenvalue of A.

Remark. The Lucas numbers Ln grow like
(

1+
√

5
2

)n
as n→∞. This makes sense, since the other

eigenvalue 1−
√

5
2 is contained between −1 and 1, and so its n–th powers will converge to 0 as n→∞.

Geometrically, suppose you want to compute the value of Ak applied to any vector v? Just decom-
pose this vector as a linear combination of the eigenvectors:

v = c1v1 + ...+ cnvn ⇒ Akv = c1A
kv1 + ...+ cnA

kvn

and so we obtain the formula:

Akv = c1λ
k
1v1 + ...+ cnλ

k
nvn (184)

We conclude that the powers of A scale by various powers of the eigenvalues λ1,...,λn in the di-
rection of the eigenvectors v1,...,vn, and this gives an effective way to compute Ak times any vector.

Finally, let us mention a common-sense, but important thing: the eigenvalues of a diagonal
matrix are the entries on the diagonal. This is because the roots of the polynomial:

det



d1 0 . . . 0
0 d2 . . . 0
...

...
. . .

...
0 0 . . . dn

− λ · I
 = det


d1 − λ 0 . . . 0

0 d2 − λ . . . 0
...

...
. . .

...
0 0 . . . dn − λ

 = (d1 − λ)...(dn − λ)

are precisely d1, ..., dn. Applying this to (177), we see that the matrices A and diagλ1,...,λn have the
same eigenvalues. This is true for any pair of conjugate matrices:

if A = V BV −1 then A and B (185)

have the same eigenvalues and characteristic polynomial

for any invertible matrix V . However, A and B will in general have different eigenvectors, and
these two bases of eigenvectors will be connected by the change of basis matrix V in formula (185).

66

Lecture 22 (October 30) Reading: section 8.3

The previous class was all about the situation when an n × n matrix A has distinct eigenvalues.
But what if the eigenvalues are repeated, i.e. what if the characteristic polynomial takes the form:

p(λ) = (d1 − λ)r1(d2 − λ)r2 ...(ds − λ)rs (186)

for certain distinct numbers d1, ..., ds, and for certain powers r1, ..., rs? We think of the eigenvalues
of A as being the following sequence of numbers:

d1, ..., d1︸ ︷︷ ︸
r1 times

, d2, ..., d2︸ ︷︷ ︸
r2 times

, ..., ds, ..., ds︸ ︷︷ ︸
rs times

(187)

The number ri is called the algebraic multiplicity of the eigenvalue di, and it represents the
number of times it appears among the roots of the characteristic polynomial. Because the degree
of the characteristic polynomial is n, the sum of the algebraic multiplicities of all eigenvalues is:

r1 + ...+ rs = n (188)

What about eigenvectors for each eigenvalue di? The set of eigenvectors for any given eigenvalue
is a subspace of Rn, namely:{

eigenvectors of A corresponding to eigenvalue λ
}

= N(A− λI)

The geometric multiplicity of any eigenvalue di is defined as the dimension of the corresponding
space of eigenvectors, namely dimN(A− diI). It never exceeds the algebraic multiplicity:

geometric multiplicity ≤ algebraic multiplicity (189)

For example, consider the matrices below:

A =

[
d 0
0 d

]
and B =

[
d 1
0 d

]
(190)

Both of them have characteristic polynomial (λ − d)2, so d is the only eigenvalue, with algebraic
multiplicity 2. But the geometric multiplicity differs among the two matrices. In the case of the
matrix A, any vector is an eigenvector because Av = dv for all v, thus implying that the eigenvalue
d has geometric multiplicity 2. But for the matrix B, we have that:

v =

[
x
y

]
is an eigenvector ⇔

[
d 1
0 d

] [
x
y

]
= d

[
x
y

]
⇔ y = 0

which implies that the subspace of eigenvectors is one-dimensional, hence the eigenvalue d has ge-
ometric multiplicity 1. This is strictly smaller than its algebraic multiplicity, which is 2.

Fact 19. A matrix is diagonalizable if and only if all of its eigenvalues have geometric multiplicity
equal to their algebraic multiplicity.

67

Indeed, if the geometric multiplicities of all eigenvalues are equal to the algebraic multiplicities,
then (188) implies that the sum of all geometric multiplicities is equal to n. This implies that the
subspaces of eigenvectors have dimensions which add up to n, hence we can pick a basis of Rn
consisting only of eigenvectors. This allows us to define the invertible matrix V whose columns are
the n chosen eigenvectors, and formula (177) holds.

But what can we say when some of the eigenvalues have geometric multiplicities strictly smaller
than their algebraic ones? In this case, the matrix A is no longer conjugate to a diagonal matrix,
as in (177). Instead, it will be conjugate to a matrix in Jordan normal form:

A = V


J1 0 . . . 0

0 J2 . . . 0
...

...
. . .

...

0 0 . . . Jt

V −1 (191)

where each Ji is a Jordan block, i.e. a matrix of the form:

λ 1 0 0 . . . 0
0 λ 1 0 . . . 0
0 0 λ 1 . . . 0
0 0 0 λ . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . λ


(192)

where λ is among the eigenvalues of A. The total number of di’s that appear on the diagonal of
the block matrix in (191) is equal to ri, the algebraic multiplicity of the eigenvalue di.

There are two things one needs to know in order to set up the Jordan normal form (191): the
specific sizes of the Jordan blocks J1, ..., Jt and the matrix V . There is a general prescription for
figuring out the sizes of the Jordan blocks, but it goes beyond the scope of our course. As for
the matrix V , we know from the diagonalizable case that its columns have something to do with
the nullspaces N(A− d1I), ..., N(A− dsI). However, in the situation at hand (when the geometric
multiplicities are smaller than the algebraic multiplicities), the dimensions of these nullspaces do
not add up to n, so they will not contain n linearly independent vectors. So instead, look at:

N
(

(A− d1I)r1
)
, ..., N

(
(A− dsI)rs

)
(193)

(where r1, ..., rs are the algebraic multiplicities of the eigenvalues) and we claim that these subspaces
are both linearly independent, and span the entire Rn. Then the subspaces (193) will contain n
linearly independent vectors, and these will be the columns of the matrix V of (191).

Let’s present this in more detail in the case when the algebraic multiplicities are all either 1 or 2.
Consider the matrix:

A =

10 −3 7
27 −10 18
5 −3 3


and we want to compute its Jordan normal form: i.e. a matrix V and Jordan blocks J1, ..., Jt such

68

that formula (191) holds. First of all, let’s compute the characteristic polynomial:

p(λ) = det(A− λI) = det

10− λ −3 7
27 −10− λ 18
5 −3 3− λ


Let us compute the determinant by cofactor expansion along the last row:

p(λ) = 5 det

[
−3 7

−10− λ 18

]
− (−3) det

[
10− λ 7

27 18

]
+ (3− λ) det

[
10− λ −3

27 −10− λ

]
=

= 5(−54 + 70 + 7λ) + 3(180− 18λ− 189) + (3− λ)(λ2 − 100 + 81) = −λ3 + 3λ2 − 4

It’s not easy to find the roots of a general cubic polynomial. But when you’re out of ideas, just try
plugging in some simple numbers for λ to see if p(λ) = 0. For example, trying λ = −1 shows that
p(−1) = 0, which implies that p(λ) is divisible by λ+ 1. Then polynomial long division shows that:

p(λ) = (λ+ 1)(−λ2 + 4λ− 4) = −(λ+ 1)(λ− 2)2

So the eigenvalues are d1 = −1 with algebraic multiplicity one, and d2 = 2 with algebraic multi-
plicity two. Now for the subspaces of eigenvectors. We have:

A+ I =

11 −3 7
27 −9 18
5 −3 4

 RREF

1 0 1
2

0 1 −1
2

0 0 0

 hence N(A+ I) = N

1 0 1
2

0 1 −1
2

0 0 0


The matrix on the right has pivot columns 1 and 2, and free column 3, so its null-space is one
dimensional and generated by the vector:xy

1

 such that

1 0 1
2

0 1 −1
2

0 0 0

xy
1

 = 0 ⇒ x = −1

2
and y =

1

2

Therefore, the eigenvalue d1 = −1 also has geometric multiplicity one, and an eigenvector is:

v1 =

−1
2

1
2
1


As for the other eigenvalue, we have:

A− 2I =

 8 −3 7
27 −12 18
5 −3 1

 RREF

1 0 2
0 1 3
0 0 0

 hence N(A− 2I) = N

1 0 2
0 1 3
0 0 0


The matrix on the right has pivot columns 1 and 2, and free column 3, so its null-space is one
dimensional and generated by the vector:xy

1

 such that

1 0 2
0 1 3
0 0 0

xy
1

 = 0 ⇒ x = −2 and y = −3

69

Therefore, the eigenvalue d2 = 2 has geometric multiplicity one, and an eigenvector is:

v2 =

−2
−3
1


So we are in the situation when geometric multiplicity is strictly smaller than algebraic multiplicity,
hence the subspaces of eigenvectors are not enough to give rise to a basis of R3. In this case, (193)
tells us to replace the nullspace of A− 2I by the nullspace of (A− 2I)2, namely:

(A− 2I)2 =

 18 −9 9
−18 9 −9
−36 18 −18

 RREF

1 −1
2

1
2

0 0 0
0 0 0

 hence N(A+ I) = N

1 −1
2

1
2

0 0 0
0 0 0


The matrix on the right has pivot column 1 and free columns 2 and 3, so its nullspace is two
dimensional and consists of vectors:xy

z

 such that 2x− y + z = 0

One of these vectors is v2, but we can take any other such vector, let’s say v3 =

 a2a
0

 (there will

be a benefit in making the last entry 0, as we will soon see) for any a. Therefore, the matrix:

V =
[
v1 v2 v3

]
=

−1
2 −2 a

1
2 −3 2a
1 1 0


is invertible. The constant a 6= 0 is yours to choose freely, but if you want to have the equality:

A = V

 −1 0 0

0 2 1
0 0 2

V −1

then you need to choose a = −1 (if you were to use any other value for a, then you would just need
to replace the entry 1 in the 2× 2 Jordan block above by the entry −a, which is not too bad).

Remark. As I mentioned, I did not give you a complete recipe for how to set up the Jordan blocks
in (191). But as you were able to see from the example above, if the Jordan blocks corresponding
to an eigenvalue λ are located on columns i, ..., j, then the columns i, ..., j of the matrix V need to
be filled with a basis of (N(A− λI)r), where r is the algebraic multiplicity of the eigenvalue λ.

Lecture 23 (November 4) Reading: section 6.3

Diagonalization and Jordan normal forms can be applied in solving systems of ordinary differential
equations. We will give a brief introduction to this topic here, but you can learn about it more
systematically in 18.03. A differential equation is any equality of the form:

u̇(t) = any expression involving u(t) (194)

70

where u(t) is a function of a single real variable (think of t as time) and u̇ = u′ is its derivative. The
point of (194) is to solve for the function u(t). As you can imagine, the problem is hard to solve in
general, especially if the expression in the right-hand side of (194) is a complicated expression of
u(t). But we will focus on the case of linear differential equations, which are of the form:

u̇(t) = λu(t) (195)

for a fixed number λ. These are now easy to solve. In fact, one can even guess the fact that:

u(t) = eλtc (196)

is a solution of (195) for any constant c. Moreover, there’s a theorem (the existence and unique-
ness of solutions of ordinary differential equations) which states that there is a unique solution to
(195) once the “initial value” c = u(0) is prescribed. Therefore, the collection of functions (196)
comprises of all solutions to the equation (195), and we have solved the latter equation completely.

The equation (195) is called first order, because only the first derivative of u appears in the
equation. But one can consider instead the more general case of an n–th order linear differential
equation, which will involve all derivatives of u up to the n–th one:

u(n)(t) = an−1u
(n−1)(t) + ...+ a2u

(2)(t) + a1u̇(t) + a0u(t) (197)

where u(n)(t) denotes the n–th derivative of u, i.e. u differentiated n times. Equation (197) is not
so straightforward to solve anymore; in particular, it’s not easy to guess a solution. However, there
is a process of replacing a single n–th order linear differential equation such as (197) by a system
of n first order linear differential equations. The way to do so is to introduce some more notation:

u1(t) = u(t), u2(t) = u̇(t), u3(t) = u(2)(t), . . . un(t) = u(n−1)(t) (198)

Then the equation (197) becomes:

u̇n(t) = an−1un(t) + ...+ a1u2(t) + a0u1(t)

to which we must add the common-sense properties (immediate consequences of (198)):

u̇1(t) = u2(t), u̇2(t) = u3(t), ... u̇n−1(t) = un(t)

With this in mind, solving the differential equation (197) is equivalent to solving the system:
u̇1(t)
u̇2(t)
...

u̇n−1(t)
u̇n(t)

 =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
a0 a1 a2 . . . an−1




u1(t)
u2(t)
...

un−1(t)
un(t)

 (199)

This is now a particular case of a system of ordinary linear differential equations:

u̇(t) = Au(t) where u(t) =

u1(t)
...

un(t)

 (200)

71

is a vector of unknown functions that we wish to solve for, and A is an n× n matrix whose entries
do not depend on t. The point of this lecture is to give a prescription for how to solve (200). First
of all, let’s deal with the case when A is a diagonal matrix. Then we have:u̇1(t)

...
u̇n(t)

 =

d1 . . . 0
...

. . .
...

0 . . . dn


u1(t)

...
un(t)

 ⇔


u̇1(t) = d1u1(t)

. . .

u̇n(t) = dnun(t)

(201)

This is just a collection of equations (195), so we know that the complete solution is:u1(t)
...

un(t)

 =

e
d1tc1

...
edntcn

 ⇒ u(t) =

e
d1t . . . 0
...

. . .
...

0 . . . ednt


c1

...
cn

 (202)

The vector of constants c =

c1

...
cn

 is equal to u(0), which is the initial condition.

Now assume we are solving the system of equations (200) for a diagonalizable matrix A (as we have
seen in the past weeks, almost all matrices are diagonalizable). So we assume:

A = V

d1 . . . 0
...

. . .
...

0 . . . dn

V −1

for an invertible matrix V . Then formula (200) becomes:

u̇(t) = V

d1 . . . 0
...

. . .
...

0 . . . dn

V −1u(t) ⇒ V −1u̇(t) =

d1 . . . 0
...

. . .
...

0 . . . dn

V −1u(t)

If we write w(t) = V −1u(t), then the formula above reads precisely:

ẇ(t) =

d1 . . . 0
...

. . .
...

0 . . . dn

w(t)

This is precisely the system of equations (201), which has the solution (202):

w(t) =

e
d1t . . . 0
...

. . .
...

0 . . . ednt

a
for a vector of constants a. Since the solution to the equation (200) is u(t) = Vw(t), we have:

u(t) = V

e
d1t . . . 0
...

. . .
...

0 . . . ednt

V −1c (203)

72

where c = V a = u(0). Let us summarize the discussion above by saying:

If A = V DV −1, then the solutions to u̇(t) = Au(t) and ẇ(t) = Dw(t) are related by

u(t) = Vw(t). So solving the latter equation is equivalent to solving the former. (204)

In practice, the matrix D will be simple (e.g. diagonal) and so the latter equation will be easy to
solve. This principle allows one to solve the former equation for a general matrix A.

Remark. There’s an alternative way to think about solving systems of differential equations. Ba-
sically, if you were to paraphrase the solution to (195), then the solution to (200) should be:

u(t) = eAtc (205)

where the vector of constants c is equal to u(0). Formula (205) is correct, but to make it precise,
one must explain what is meant by matrix exponential. One way to define it is via Taylor series:

eAt = 1 +At+
A2t2

2
+ ...+

Antn

n!
+ ...

which is a practical way to define it for special matrices A (such as upper/lower triangular matrices
with 0 on the diagonal). Moeover, if A = V DV −1 with D a diagonal matrix, then (183) implies:

Ak = V DkV −1 ⇒ eAt = V eDtV −1

With this in mind, the solution (205) is precisely the same as (203).

As an example, let us solve the system of differential equations:{
u̇1(t) = 11u1(t)− 6u2(t)

u̇2(t) = 18u1(t)− 10u2(t)

Let us combine the unknown functions into the vector u(t) =

[
u1(t)
u2(t)

]
and convert the system into:

u̇(t) = Au(t) where A =

[
11 −6
18 −10

]
(206)

The second step is to diagonalize A, which starts with computing its eigenvalues:

p(λ) = det(A− λI) = det

[
11− λ −6

18 −10− λ

]
= λ2 − λ− 2

has roots equal to 2 and −1. You may compute eigenvectors for each of these eigenvalues:

v1 =

[
2
3

]
∈ N(A− 2I) and v2 =

[
1
2

]
∈ N(A+ I)

Then Fact 18 implies that:

A = V

[
2 0
0 −1

]
V −1 where V =

[
2 1
3 2

]
73

So the principle (204) allows us to convert the system (206) into the system:

ẇ(t) =

[
2 0
0 −1

]
w(t)

where w(t) = V −1u(t). The latter system has solution:

w(t) =

[
e2t 0
0 e−t

]
a

which implies that the system (206) has solution:

u(t) = V

[
e2t 0
0 e−t

]
a =

[
2a1e

2t + a2e
−t

3a1e
2t + 2a2e

−t

]
for certain constants a1 and a2, which one can solve for from the initial condition u(0).

Lecture 24 (November 6) Reading: section 9.1

Consider the problem of diagonalizing the matrix:

A =

[
0 −1
1 0

]
(207)

As we have seen in Fact 18, the recipe for doing so is to find the eigenvalues and eigenvectors of A
first. Now the eigenvalues are the roots of the characteristic polynomial:

p(λ) = det

[
−λ −1
1 −λ

]
= λ2 + 1 (208)

You may be tempted to believe that this polynomial has no roots, because after all, no real number
has the property that its square is −1. And your guess would seem to be justified: the linear
transformation corresponding to the matrix (207) is rotation by 90 degrees of the plane. If the
matrix had an eigenvector, then rotation by 90 degrees would have to scale along the direction of
that eigenvector, which does not seem to make any sense geometrically.

However, in math, a paradox is rarely the end of the story, but more often it is the catalyst for
new discoveries. In the example at hand, the way to fix the fact that the polynomial (208) has no
solutions is to add these solutions by hand. What this means is that we are no longer satisfied with
real numbers, and instead we want to consider the imaginary number:

i defined such that i2 = −1 (209)

which is often abbreviated as saying i =
√
−1. You should read this as saying that i is defined to

be the square root of −1, and it certainly is not a real number. But it is a very useful tool for
defining complex numbers, which are by definition all expressions of the form:

z = a+ bi (210)

for any real numbers a and b. You may ask: why don’t we also throw in various powers of i into
the expression (210) while we’re at it? The reason is that doing so would be redundant, since the
powers of i can themselves be expressed in the form (210):

i2 = −1 i3 = −i i4 = 1 i5 = i i6 = −1 ... (211)

74

Remark. I hope you won’t be put off by the feeling that complex numbers are “contrived”. In
the past, people have argued for hundreds of years whether negative integers make any sense, and
ultimately we accepted them. And if you think about it, what is the meaning of “−2” other than
“the thing to which you add 2 to get 0” and what is the meaning of “

√
3” other than “the thing

which you square to get 3”. Similarly, “i” is defined as “the thing which you square to get −1”.

Complex numbers can be added and multiplied using the usual algebra operations:

(a+ ib) + (c+ id) = (a+ c) + i(b+ d) (212)

(a+ ib)(c+ id) = ac+ adi+ bci+ bdi2 = (ac− bd) + (ad+ bc)i (213)

so the sum and product of complex numbers is also a complex number. But complex numbers have
other kinds of operations associated to them. If z = a+ bi is a complex number, then:

Re z = a is called the real part of z (214)

Im z = b is called the imaginary part of z (215)

z̄ = a− bi is called the conjugate of z (216)

Therefore, the conjugate of a complex number is that complex number with the same real part,
but the opposite imaginary part. Moreover, define the absolute value of a complex number as:

|z| =
√
a2 + b2 (217)

If this looks familiar, then it should! Since a complex number (210) is just a pair of real numbers,
it encodes the same information as a point in the plane, or a vector in R2. Then the absolute value
of the complex number is just the length of the corresponding vector. Let us prove that:

zz̄ = |z|2 (218)

Indeed, this is because:

(a+ bi)(a− bi) = a2 − abi+ abi− b2i2 = a2 + b2

Formula (218) is important because it allows us to write:

1

z
=

z̄

|z|2
i.e.

1

a+ bi
=

a− bi
a2 + b2

(219)

and this is great because it allows us to divide complex numbers:

2 + i

4 + 3i
=

(2 + i)(4− 3i)

42 + 32
=

8− 6i+ 4i− 3i2

25
=

11

25
− 2

25
i

We now have the tools to diagonalize the matrix (207). Its characteristic polynomial has two roots,
which are complex numbers:

p(λ) = λ2 + 1 = (λ− i)(λ+ i) has roots

{
λ1 = i

λ2 = −i

75

so the eigenvalues are i and−i. Now we need to find eigenvectors corresponding to these eigenvalues:

Av1 = iv1 ⇒ (A− iI)v1 = 0 ⇒ v1 ∈ N(A− iI)

Av2 = −iv2 ⇒ (A+ iI)v2 = 0 ⇒ v2 ∈ N(A+ iI)

To compute the nullspaces in question, we perform our good friend Gaussian elimination:

A− iI =

[
−i −1
1 −i

]
REF

[
−i −1
0 0

]

just by adding (−i) times the first row to the second row. Therefore, v1 =

[
x
y

]
lies in N(A− iI) if:

[
−i −1
0 0

] [
x
y

]
= 0 ⇒ −ix− y = 0

so a choice of eigenvector for the eigenvalue i is v1 =

[
1
−i

]
. Similarly, one finds that a choice of

eigenvector for the eigenvalue −i is v2 =

[
1
i

]
. Therefore, Fact 18 implies that:

[
0 −1
1 0

]
= V

[
i 0
0 −i

]
V −1 where V =

[
1 1
−i i

]
and this concludes the diagonalization of the matrix A of (207).

Any quadratic polynomial has two complex roots, specifically:

ax2 + bx+ c = 0 has solutions
−b±

√
b2 − 4ac

2a
(220)

where if b2 − 4ac < 0, the square root in question will be an imaginary number (i.e. a multiple of
i). But it turns out that complex numbers allow us to find roots of arbitrary polynomials. To this
end, the fundamental theorem of algebra states that:

any polynomial of degree n has exactly n complex roots (221)

where the word “exactly” should be taken to mean “counted with multiplicities”, as in Lecture 22.

Let’s discuss one more feature of complex numbers, which is very useful in computations: the polar
form. As we have seen, a complex number can be represented as a point in the plane via Cartesian
coordinates:

z = a+ ib (a, b)

However, we can represent the same point via polar coordinates:

z = a+ ib (r, θ)

where r =
√
a2 + b2 is the absolute value of z (i.e. the size of a circle around the origin where the

point is located) and θ ∈ [0, 2π) is the angle between the point in question and the horizontal line:

cos θ =
a√

a2 + b2
⇒ θ = arccos

(
a√

a2 + b2

)
76

The angle θ is called the argument of z, and is only defined up to adding arbitrary integer multiples
of 2π (because θ and θ+ 2π determine the same angle, there is an inherent ambiguity in the notion
of “argument”). Since (cos θ)2 + (sin θ)2 = 1, we have sin θ = b√

a2+b2
and therefore:

z = a+ bi = r(cos θ + i sin θ) (222)

The above is called the polar form of z. Recall the Taylor series expansions of cos θ and sin θ:

cos θ = 1− θ2

2!
+
θ4

4!
+ ...

sin θ = θ − θ3

3!
+
θ5

5!
+ ...

which implies that:

cos θ + i sin θ = 1 + iθ − θ2

2!
− iθ3

3!
+
θ4

4!
+
iθ5

5!
− ...

The right-hand side is the Taylor series of eiθ (see (211)), so we obtain the following identity:

eiθ = cos θ + i sin θ (223)

The polar form (222) of a complex number can therefore be written in a nicer form as:

z = a+ bi = reiθ (224)

Since |eiθ| = 1, the polar form of a complex number can be said to separate its absolute value part
(namely r) from its angular part (namely eiθ). One of the good things about the polar form is that,
as opposed from the Cartesian form, it’s handy for multiplying numbers and raising to powers:

zn = rneinθ (225)

and:
zz′ = rr′ei(θ+θ

′) (226)

if z = reiθ and z′ = r′eiθ
′
. In other words, we have:

|zz′| = |z||z′|

arg(zz′) = arg(z) + arg(z′)

(the sum of arguments formula only holds up to adding integer multiples of 2π). Formula (225)
allows us to describe the roots of unity, i.e. solutions of:

zn = 1 (227)

If z is a real number, the only solution to this equation is z = 1 (and also z = −1 if n is even),
but the equation in question has more solutions in the world of complex numbers. Specifically, as
a consequence of the fundamental theorem of algebra (221), we expect the equation (227) to have
n complex solutions. If z = reiθ, then combining formulas (225) and (227) gives us:

rneinθ = 1

77

Since r is a positive real number, we must have r = 1. Since θ is an angle, the equation above
implies nθ to be an even integral multiple of 2π. Therefore, we conclude that the solutions of the
equation (227), namely the n–th roots of unity, are:

1, e
2πi
n , e

4πi
n , ..., e

2(n−1)πi
n (228)

There’s no need to go beyond the (n − 1)–th multiple of 2π
n , since then we will just recover the

same numbers over again (this is simply because θ and θ + 2π represent the same angle).

Lecture 25 (November 8) Reading: section 6.4–6.5

Let us now consider eigenvalues and eigenvectors of symmetric matrices.

Fact 20. A n× n symmetric matrix S has n real eigenvalues and n orthonormal eigenvectors.

You can find a proof of the fact that the eigenvalues are real in the textbook, the bottom of page
339. For example, in the 2× 2 case, a symmetric matrix:

S =

[
a b
b c

]
(229)

has characteristic polynomial:

p(λ) = λ2 − λ(a+ c) + ac− b2

whose roots are:

a+ c±
√

(a+ c)2 − 4ac+ 4b2

2
=
a+ c±

√
(a− c)2 + 4b2

2
(230)

It is clear that these are real, because (a − c)2 + 4b2 ≥ 0. As for the fact that the eigenvectors of
a symmetric matrix S are orthogonal, suppose λ 6= λ′ are distinct eigenvalues with corresponding
eigenvectors v,v′. Then:

λ · vTv′ = (Sv)Tv′ = vTSTv′ = vTSv′ = λ′ · vTv′

which implies vTv′ = 0. Once you know that the eigenvectors are orthogonal, they can be made
orthonormal by rescaling them appropriately (since any multiple of an eigenvector is an eigenvector).
As a consequence of the fact above, we may put the orthonormal eigenvectors q1, ..., qn in a matrix:

Q =
[
q1 . . . qn

]
which is, by definition, an orthogonal matrix. Then (177) implies that we may write:

S = Q


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λn

Q−1 = Q


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λn

QT (231)

78

The last equality follows from the fact that Q−1 = QT , a general feature of orthogonal matrices.

Geometrically, equality (231) can be interpreted as the fact that the linear transformation corre-
sponding to a symmetric matrix can always be factored as:(

rotation
)(

scaling
)(

inverse rotation
)

(232)

Indeed, diagonal matrices correspond to scaling in the direction of the coordinate axes, while
orthogonal matrices correspond to rotations in n–dimensional space (as an exercise, prove that any
2× 2 orthogonal matrix must be literally equal to one of the rotation matrices on the top of page
47). Explicitly, formula (231) implies that we can always express a symmetric matrix as:

S = λ1q1q
T
1 + ...+ λnqnq

T
n (233)

(you can prove this by applying both sides of the identity to an arbitrary eigenvector qi, and then
extending by linear combinations to arbitrary vectors).

Remark. For an arbitrary (not necessarily symmetric) matrix A, the eigenvalues can be complex
numbers. However, when this happens:

The complex eigenvalues of any real matrix come in conjugate pairs (234)

For example, in a 2× 2 example, the characteristic polynomial:

p(λ) = λ2 − λ · Tr + det

has roots:
Tr±

√
Tr2 − 4 · det

2

If Tr2 < 4 · det, the roots are complex numbers, and they are manifestly conjugates of each other.
Moreover, the eigenvectors corresponding to conjugate eigenvalues are also conjugate:

Av = λv ⇒ Av = λ̄v̄

While in general, the eigenvalues and pivots of a square matrix are not directly related to each
other (other than the fact that the eigenvalues and the pivots both have the same product, i.e. the
determinant), for a symmetric matrix we have:

there are as many positive eigenvalues as positive pivots (235)

The analogous statement is true if “positive” were replaced by “negative”.

Definition 21. A symmetric matrix with all eigenvalues/pivots > 0 is called positive definite.
A symmetric matrix with all eigenvalues/pivots ≥ 0 is called positive semidefinite.

79

In general, if S is a positive definite (respectively semidefinite) matrix, then the “energy” 3:

vTSv > 0 (respectively vTSv ≥ 0) (236)

for any vector v 6= 0. Indeed, just decompose v as a linear combination of the eigenvectors of S:

v = c1q1 + ...+ cnqn

and then (236) becomes (because the qi’s are orthonormal):

vTSv =
∑

1≤i,j≤n
cicjq

T
i Sqj =

∑
1≤i,j≤n

cicjλjq
T
i qj =

n∑
i=1

c2
iλi

which is positive (respectively non-negative) if λ1, ..., λn > 0 (respectively λ1, ..., λn ≥ 0). Note:
condition (236) is actually equivalent to the matrix S being positive definite (respectively semidefini-
tie). This gives a simple argument for why S and T being positive definite/semidefinite matrices
implies that αS + βT is positive definite/semidefinite for any positive numbers α, β.

Remark. We already know that a big source of symmetric matrices are S = ATA for an arbitrary
matrix A. This matrix is positive semidefinite, because:

vTSv = vTATAv = (Av)T (Av) = ||Av||2 ≥ 0 (237)

Moreover, S = ATA is positive definite precisely if Av 6= 0 for all v 6= 0, which happens if and
only if A has linearly independent columns (i.e. have trivial nullspace). Conversely, any positive
definite matrix is of the form ATA for some matrix A with linearly independent columns.

Let’s work out in detail the case of a 2×2 symmetric matrix S, given by (229). Since the eigenvalues
of S are given by (230), in order for them to both be positive, we would need a+ c > 0 and:

a+ c >
√

(a− c)2 + 4b2 ⇒ (a+ c)2 > (a− c)2 + 4b2 ⇒ ac > b2

So we conclude that:

A 2× 2 symmetric matrix is positive definite precisely when Tr S, det S > 0 (238)

As for the energy in the case when S is given by (229), we have:[
x y

] [a b
b c

] [
x
y

]
= ax2 + 2bxy + cy2 (239)

It is a well-known fact in algebra that the expression above is positive for all x and y if a > 0 and
ac > b2, precisely as predicted by (238). In fact, you may recognize the equation “(239) = 1” as
the equation of a conic in the plane: if S is positive definite, then this conic is an ellipse, while
otherwise it’s a hyperbola (the intermediary case, when one of the eigenvalues is 0, is a parabola).

Let’s do all of this in a numerical example:

S =

[
5 4
4 5

]
3The name comes from physics, in the case when v is the vector of momenta of a system of particles

80

Its characteristic polynomial is λ2−10λ+9, whose roots are 9 and 1. The corresponding eigenvectors

are v1 = 1√
2

[
1
1

]
and v2 = 1√

2

[
1
−1

]
, hence we conclude that:

S = QDQT

where:

D =

[
9 0
0 1

]
and Q =

1√
2

[
1 1
1 −1

]
The ellipses corresponding to S and D are:

5x2 + 8xy + 5y2 = 1 and 9x2 + y2 = 1

The latter ellipse has its axes lined up with the coordinate axes. The former has its axes lined up
with the eigenvectors v1 and v2, which is consistent with the fact that going from D to S amounts
to rotating the coordinate axes from e1, e2 to v1,v2, i.e. applying the linear transformation Q.

Lecture 26 (November 13) Reading: section 7.1–7.2

We will now study the Singular Value Decomposition (SVD) of a matrix, which is very useful
in computations. Think of image processing: in general, this deals with a large rectangular table
of pixels, and the color of every pixel is an integer. So the image is encoded by an m × n matrix
A of integers, where m and n are two very large numbers which keep track of how many pixels we
have vertically and horizontally. If the colors of all the pixels are random, then there’s not much
you can do to simplify the matrix A. But in real life, nearby pixels tend to have similar colors,
and patterns emerge that allow you to conclude that the matrix A has a special form. An extreme
example is where your image consists only of three colors separated by vertical lines, such as a flag:

A =



1 1 2 2 2 2 2 3 3 3
1 1 2 2 2 2 2 3 3 3
1 1 2 2 2 2 2 3 3 3
1 1 2 2 2 2 2 3 3 3
1 1 2 2 2 2 2 3 3 3
1 1 2 2 2 2 2 3 3 3
1 1 2 2 2 2 2 3 3 3
1 1 2 2 2 2 2 3 3 3


Remembering the whole matrix is both memory and computational power-consuming, so you’d be
more efficient by remembering instead the fact that A can be presented as the product:

A =



1
1
1
1
1
1
1
1


·
[
1 1 2 2 2 2 2 3 3 3

]

81

of a column vector and a row vector. In general, the goal of SVD is to write any rectangular matrix
as a sum of such products (let r be the rank of A):

A = u1σ1v
T
1 + ...+ urσrv

T
r (240)

where each ui is a column vector, each vTi is a row vector, and:

the positive numbers σ1, ..., σr > 0 are called singular values

Let us now explain how to obtain the decomposition (240).

Fact 21. The m × m matrix AAT and the n × n matrix ATA are both symmetric and positive
semidefinite. These two matrices have the same set of positive eigenvalues; call them σ2

1, ..., σ
2
r .

You proved the latter statement in Problem Set 8 (also, it’s not hard to prove that the num-
ber of positive eigenvalues is equal to r = rank A). Since symmetric matrices have orthonormal
eigenvectors, we can choose:

left singular vectors u1, ...,ur, ...,um ∈ Rm

right singular vectors v1, ...,vr, ...,vn ∈ Rn

such that the ui’s are orthonormal and the vi’s are orthonormal, and:

AATui = σ2
i ui and ATAvi = σ2

i vi (241)

(the formulas above even hold for i > r, if we let σr+1, σr+2, ... = 0). But we actually want the left
and right singular vectors to also be connected, via the following formulas:

Avi = σiui and ATui = σivi (242)

which also hold for all i, even i > r. The numbers σ1, ..., σr are called singular values. It is easy
to see that (242) implies both (241) and (240): the former implication is an easy exercise, while the
latter follows by multiplying both sides of (240) with any given vector vi and using that vTj vi = 0
if j 6= i. Note that the singular value decomposition (240) can be written in compact form as:

A = UΣV T (243)

where:

U =
[
u1 ... um

]
Σ =



σ1 0 0 0 . . .

0
. . . 0 0 . . .

0 0 σr 0 . . .
0 0 0 0 . . .
...

...
...

...
. . .

 V =
[
v1 ... vn

]

Remark. From (242), it follows that u1,...,ur form a basis of the column space of A, and v1,...,vr
form a basis of the row space. The orthogonality of the four subspaces therefore implies that
ur+1, ...,um form a basis of the left nullspace of A, while vr+1, ...,vn form a basis of the nullspace.

82

Since V is an orthogonal matrix, we have V T = V −1, so (243) implies:

AV = UΣ (244)

which is just another way to write the first identity in (242). As for the second identity in (242),
we can obtain it as follows. First transpose relation (243):

AT = V ΣTUT (245)

Since U is an orthogonal matrix, we have UT = U−1, hence:

ATU = V ΣT (246)

Therefore, the SVD of the transpose of A is obtained by transposing the SVD of A.

Let’s do an example of SVD, which will also show us that the procedure works, for the matrix:

A =

3 2
2 3
2 −2


We first need to compute the singular values, which will be the square roots of the eigenvalues of:

ATA =

[
3 2 2
2 3 −2

]3 2
2 3
2 −2

 =

[
17 8
8 17

]
The characteristic polynomial of this matrix is:

p(λ) = det

[
17− λ 8

8 17− λ

]
= (17− λ)2 − 82

and its roots will be precisely those numbers for which 17− λ = ±8, so:

17− σ2
1 = −8 ⇒ σ2

1 = 25 ⇒ σ1 = 5

17− σ2
2 = 8 ⇒ σ2

2 = 9 ⇒ σ2 = 3

(it is customary to order your signular values σ1, ..., σr from the greatest to the smallest). Next,
you need to find the right singular vectors, which will be eigenvectors of the matrix ATA:

v1 ∈ N
([

17− σ2
1 8

8 17− σ2
1

])
= N

([
−8 8
8 −8

])
⇒ v1 =

1√
2

[
1
1

]
v2 ∈ N

([
17− σ2

2 8
8 17− σ2

2

])
= N

([
8 8
8 8

])
⇒ v2 =

1√
2

[
1
−1

]
Note that v1 and v2 are orthonormal (indeed, eigenvectors of symmetric matrices are always or-
thogonal, and we have scaled them so as to have length 1). Now let’s compute the left singular
vectors. Formula (242) forces us to take

u1 =
1

5
Av1 =

1

5

3 2
2 3
2 −2

 1√
2

[
1
1

]
=

1√
2

1
1
0


u2 =

1

3
Av2 =

1

3

3 2
2 3
2 −2

 1√
2

[
1
−1

]
=

1

3
√

2

 1
−1
4


83

The vectors u1 and u2 are also orthonormal (this follows from the fact that v1 and v2 are) but we
need to complete them to an orthonormal basis of R3. This is achieved by Gram-Schmidt. Start
with any vector, say:

a3 =

0
0
1


and construct the vector:

w3 = a3 − proju1
a3 − proju2

a3 =

0
0
1

− 1√
2

1
1
0

 · 0− 1

3
√

2

 1
−1
4

 · 4

3
√

2
=

1

9

−2
2
1


The vector w3 thus constructed is orthogonal to both u1 and u2, so we need to renormalize it:

u3 =
w3

||w3||
=

1

3

−2
2
1


With this in mind, we conclude the following SVD for the matrix A:

A =


1√
2

1
3
√

2
−2

3
1√
2
− 1

3
√

2
2
3

0 4
3
√

2
1
3


5 0

0 3
0 0

[1√
2

1√
2

1√
2
− 1√

2

]

So in general, what can we say about a rank 1 matrix? The answer is that it will be of the form:

A = uσvT (247)

where u and v are length 1 vectors, and σ is a number. In other words, any column of a rank 1
matrix is a multiple of u and any row is a multiple of v. With this in mind, the singular value
decomposition (240) can be thought of as:

SVD writes any matrix as a sum of rank 1 matrices (248)

where the columns (respectively rows) of the rank 1 matrices involved are pairwise orthogonal. This
is good to keep in mind, since it can save you a lot of time when doing SVD on a matrix where it’s
intuitively pretty obvious how to break it up as a sum of rank 1 matrices. For example:

A =

[
0 5 0
−3 0 0

]
If you started off by doing the usual algorithm (compute the eigenvalues and eigenvectors of the
3 × 3 matrix ATA) you might find yourself doing a lot of work. You can save a lot of time by
observing that A decomposes as:

A =

[
0 5 0
0 0 0

]
+

[
0 0 0
−3 0 0

]
Each of the two matrices above has rank 1, because all of their columns are multiples of a single
vector. Even more explicitly, we have:

A =

[
1
0

]
︸︷︷︸
u1

· 5︸︷︷︸
σ1

·
[
0 1 0

]︸ ︷︷ ︸
v1

+

[
0
−1

]
︸ ︷︷ ︸
u2

· 3︸︷︷︸
σ2

·
[
1 0 0

]︸ ︷︷ ︸
v2

However, when using this shortcut, you need to make sure that the vectors u1,u2, ... you construct
are orthonormal (and also that the vectors v1,v2, ... are orthonormal).

84

Lecture 27 (November 15) Reading: section 7.4

In practice, the singular value decomposition (240) of a matrix gives us a computationally manage-
able way to compute how A acts on arbitrary vectors:

v = c1v1 + ...+ cnvn (249)

(since the vi are orthogonal, recall that ci = vTi v). Then we have:

Av = σ1c1u1 + ...+ σrcrur (250)

It is customary to order your singular values σ1 ≥ ... ≥ σr > 0. In this case, you can compare (249)
with (250) to get:

||Av||
||v||

=

√
σ2

1c
2
1 + ...+ σ2

rc
2
r

c2
1 + ...+ c2

r + ...+ c2
n

≤ σ1

Moreover, we get equality in the inequality above precisely when v is a multiple of v1. Therefore:

σ1 is the maximum of
||Av||
||v||

, achieved for v = v1 (251)

which is an intrinsic characterization of the largest singular value. Specifically, we are saying that
the largest singular value is equal to the norm of the matrix:

||A|| := max
w∈Rn\0

||Aw||
||w||

∈ R+ (252)

The norm of a matrix satisfies the usual “triangle inequality” satisfied by the norms of vectors:

||A+B|| ≤ ||A||+ ||B|| (253)

(proof: for any vector w, we have ||(A + B)w|| ≤ ||Aw|| + ||Bw|| ≤ ||A|| · ||w|| + ||B|| · ||w|| =
(||A||+ ||B||) · ||w||, which implies (253)) as well as a similar inequality when multiplying matrices:

||AB|| ≤ ||A|| · ||B|| (254)

(proof: for any vector w, we have ||ABw|| ≤ ||A|| · ||Bw|| ≤ ||A|| · ||B|| · ||w||, which implies (254)).
You can obtain norm-like descriptions of the other singular values of a matrix, as follows:

σ2 is the maximum of
||Av||
||v||

among those v ⊥ v1, achieved for v = v2 (255)

σ3 is the maximum of
||Av||
||v||

among those v ⊥ v1,v2, achieved for v = v3 (256)

etc. In fact, this recursive procedure defines the singular values σi and the right singular vectors
vi (from which the left singular vectors can be deduced from (242)): first σ1 and v1 are defined by
(251), then σ2 and v2 are defined by (255), then σ3 and v3 are defined by (256) etc.

Geometrically, the SVD in the form (243) means that any matrix A can be factored as:(
rotation

)(
scaling

)(
another rotation

)
(257)

85

Compare this with (232) for symmetric matrices: the novelty in (257) is that the two rotations,
which correspond to the orthogonal matrices U and V T respectively, are now completely different
linear transformations acting on two different vector spaces. This is natural, since A corresponds
to a linear transformation from Rn to Rm. Meanwhile, the two rotations in (232) are inverses to
each other, which is natural because the symmetric matrix therein had the same domain and target.

You can find a picture of the factorization (257) on page 392 of the textbook: the two rotations do
not change any given shape, they just rotate it around space. But the scaling in the middle does
change shapes by dilations across various axes: circles become ellipses, squares become rectangles
etc. In the case of 2× 2 matrices, the factorization explicitly says that:[

a b
c d

]
︸ ︷︷ ︸

A

=

[
cos θ − sin θ
sin θ cos θ

]
︸ ︷︷ ︸

U

[
σ1 0
0 σ2

]
︸ ︷︷ ︸

Σ

[
cosφ − sinφ
sinφ cosφ

]
︸ ︷︷ ︸

V T

Now let us recall formula (245), which explains that the transpose of a matrix A has the transposed
singular value decomposition. So what can we say about the “inverse” of a matrix? The reason why
I put the word “inverse” in quotes is that we are in the rectangular case, where a proper inverse
most likely does not exist. However, if it did, then from formula (242) we would expect:

“A−1”(ui) =
vi
σi

(258)

The goal of the following is to define a notion of “inverse” which satisfies the equation above.

Definition 22. The pseudo-inverse of an m× n matrix A = UΣV T is the n×m matrix:

A+ = V Σ+UT (259)

where Σ+ =



1
σ1

0 0 0 . . .

0
. . . 0 0 . . .

0 0 1
σr

0 . . .

0 0 0 0 . . .
...

...
...

...
. . .

.

The pseudo-inverse coincides with the inverse in the cases when the latter exists, i.e. m = n = r.
In general, the pseudo-inverse satisfies the following inverse-like properties:

A+A = V Σ+UTUΣV T = V (Σ+Σ)V T = V

[
Ir 0

0 0

]
V T

AA+ = UΣV TV Σ+UT = U(ΣΣ+)UT = U

[
Ir 0

0 0

]
UT

If the block matrix in the right-hand sides were just equal to the identity matrix I, then A and A+

would be bona fide inverses. However, as such, the block matrix is simply the projection matrix
onto the first r coordinate vectors. And when we conjugate this block matrix by the orthogonal
matrices V and U , respectively, we conclude that:

A+A = projection onto C(AT) (260)

AA+ = projection onto C(A) (261)

86

This happens because the row space (respectively the column space) of the matrix A is spanned
by the first r vectors of the matrix V (respectively U), as in the Remark in the previous Lecture.

As an example, let’s compute the pseudo-inverse of the matrix:

A =

[
9 12
12 16

]
This matrix has rank 1, so its SVD is computed just like at the end of the previous lecture:

A =

[
3
4

] [
3 4

]
=

[
3
5
4
5

]
· 25 ·

[
3
5

4
5

]
⇒ A+ =

[
3
5
4
5

]
· 1

25
·
[

3
5

4
5

]
=

1

25

[
9 12
12 16

]
Pseudo-inverses have a nice application to least squares: remember that the closest approximation
to the system Av = b is v = (ATA)−1ATb, but we always made the caveat that the columns of A
need to be independent in order for ATA to be invertible. If A has dependent columns, while we
cannot write (ATA)−1, we can use the pseudo-inverse to give us the following solution:

the closest Av is to b is achieved for v+ = A+b (262)

Such a v is not unique, basically because the fact that A has dependent columns implies that its
nullspace is non-trivial (so to any particular solution v, you could add any vector in the nullspace
of A, and you would still get a solution). But to see that the particular solution v+ in (262) does
indeed satisfy Av+ = projC(A)b, just apply A to both sides of the equation in the box. You get:

Av+ = (AA+)b = projC(A)b

as a consequence of (261). So Av+ is precisely the projection of b onto the column space of A, as
required by the geometry of least squares approximation.

Let’s now consider one last application of SVD’s in the case of square matrices (i.e. m = n):

Definition 23. The polar decomposition of an n× n matrix A is:

A = QS (263)

where Q is orthogonal, and S is positive semidefinite.

The name stems from the fact that in the 1 × 1 case, any number a has a polar form (224): the
number eiθ has absolute value 1 so it behaves like an orthogonal 1 × 1 matrix, and the number
r ≥ 0 is a positive semidefinite 1× 1 matrix. In general, you can obtain the polar decomposition of
a matrix from its singular value decomposition, as follows:

A = UΣV T = (UV T)︸ ︷︷ ︸
Q

· (V ΣV T)︸ ︷︷ ︸
S

(264)

Indeed, the product of orthogonal matrices is orthogonal (it is key here that m = n, i.e. this all
applies to square matrices), which means that Q := UV T is orthogonal. Moreover, S := V ΣV T is
the usual formula for the diagonalization of a symmetric matrix, as we have seen in (231). The fact
that the eigenvalues of S, i.e. the diagonal entries of Σ, are non-negative is precisely equivalent
with saying that S is positive semidefinite. The eigenvalues of S are the singular values of A.

87

Lecture 28 (November 18) Reading: section 12.1

We will now start discussing major applications of linear algebra: probability and statistics. First
of these is probability, which studies the likelihood of future events. Suppose we’re in a situation
with n possible outcomes x1, ..., xn, which arise with probabilities p1, ..., pn, respectively. Then:

p1, ..., pn > 0 and p1 + ...+ pn = 1 (265)

Definition 24. The mean is the sum of the possible outcomes, weighted by their probabilities:

µ = p1x1 + ...+ pnxn (266)

and the variance is:
Σ = p1(x1 − µ)2 + ...+ pn(xn − µ)2 (267)

The square root of the variance, namely σ =
√

Σ, is called the standard deviation.

The mean is sometimes called the expected value, which is the plain English significance of this
notion. The variance is a positive quantity which measures how far away from the mean our out-
comes are. Clearly, the variance is 0 only if there exists a single outcome with probability 1.

The situation described above is where there are finitely many (or discrete) outcomes. But we could
also study a quantity which takes infinitely many (or continuous) values, for example temperature.
In this case, the probability is encoded not in a finite set of numbers, but in a function:

p(x) : R −→ R≥0

called probability distribution. In this context, you shouldn’t measure the probability of your
quantity being exactly equal to x (for example, it makes little sense to measure the probability
that temperature will be exactly 62.746 degrees) but you measure instead the probability that the
quantity lies in a certain interval [a, b] (for example, you measure the probability that temperature
falls between 62 and 63 degrees):

Prob(x ∈ [a, b]) =

∫ b

a
p(x)dx (268)

The reason for the integral is that it is the continuous analogue of a sum: if you subdivide the
interval [a, b] into many (sayN very large) small intervals, then the integral in (268) is infinitesimally
close to the sum of the probabilities that x lies in the N small intervals. In this continuous context,
condition (265) is replaced by: ∫ ∞

−∞
p(x)dx = 1 (269)

while the mean and variance (266) and (267) must be defined by integrals:

µ =

∫ ∞
−∞

p(x)xdx (270)

Σ =

∫ ∞
−∞

p(x)(x− µ)2dx (271)

88

The most basic example of probability distribution is the uniform one, where the variable can lie
in an interval (say [0, c]) with constant probability:

p(x) =

{
1
c if x ∈ [0; c]

0 otherwise

However, this probability distribution does not really show up in nature. Real-life probabilities
do not like the sharp cut-offs that the function above experiences at the endpoints of the interval
[0, c]. Perhaps even more importantly, real-life probability distributions tend to be higher around
the mean and lower away from the mean. The standard example of such a behavior is the normal
(or Gaussian) distribution:

p(x) =
e−

x2

2

√
2π

(272)

whose graph (sometimes called a “bell curve”) is plotted below. As always, the probability that
the variable x lies in a given interval [a, b] is equal to the integral of p(x) (or the area under the
graph) from x = a to x = b.

-4 -2 2 4

0.1

0.2

0.3

0.4

The reason for dividing by the factor
√

2π is because you want the total probability to be equal to
1, i.e. (269). The mean and variance of the normal distribution (272) are given by:

µ =
1√
2π

∫ ∞
−∞

xe−
x2

2 dx = 0

Σ =
1√
2π

∫ ∞
−∞

x2e−
x2

2 dx = 1

More generally, the normal probability distribution with arbitrary mean µ ∈ R and arbitrary
variance Σ > 0 is given by the function:

p(x) =
e−

(x−µ)2

2Σ

√
2πΣ

(273)

Normal distributions are extremely important, because of the central limit theorem: if you perform
an experiment N →∞ times, the mean of your samples tends to look as if it came from a normal

89

distribution. For example, if you flip a coin N times, the probability of getting exactly k heads
is close to the probability that x ∈ [0, k] for the normal distribution (273) with mean µ = N

2 and
variance Σ = N

4 . In the error analysis of the probability distribution (273), the probability that:

x is at most σ away from the mean is ∼ 68%

x is at most 2σ away from the mean is ∼ 95%

x is at most 3σ away from the mean is ∼ 99.7%

x is at most 4σ away from the mean is ∼ 99.99%

x is at most 5σ away from the mean is ∼ 99.9999%

You can actually see this in the graph of the bell curve above: about 99.7% of the area under the
graph of the bell curve is between x = −3 and x = 3 etc. Let’s summarize the discussion above.

Definition 25. A random variable is a quantity X that takes values in R, which is either:

• discrete, so takes finitely many values x1, ..., xn with probabilities p1, ..., pn, or

• continuous, associated to a probability distribution p(x).

In either case, the mean (or expected value) is denoted by:

E[X] = µ (274)

and is defined by either (266) or (270). Then the variance is:

E
[
(X − µ)2

]
= Σ (275)

and is given by either (267) or (271).

Lecture 29 (November 20) Reading: section 12.2

The true power of linear algebra in probability comes about when we run more than one experi-
ment at once, and we want to compare the outcomes. The notion that measures this is the following.

Definition 26. Given two random variables X and Y , their covariance is the quantity:

ΣXY = E
[
(X − E[X])(Y − E[Y])

]
(276)

Note that ΣXX is just the variance of the random variable X itself.

Let’s start with the case of discrete probabilities, so X and Y both take a finite number of values
with certain probabilities. The whole point of covariance is to measure the extend to which X and

90

Y are correlated with each other. So it does not suffice to simply know the probabilities of the
various values of X and Y separately, but instead you need to know the joint probabilities:

pij is the probability that (X,Y) = (xi, yj) (277)

where x1, x2, ... are the possible values of X and y1, y2, ... are the possible values of Y .

Example 4. Let’s assume that X and Y are coin flips, and their possible values are heads (H)
and tails (T). If the two coin flips are independent, then the joint probabilities are:

pHH = pTT = pHT = pTH =
1

4

But if the random variables are two coin flips which are forced to always land on the same side
(think something involving magnets), then the joint probabilities are:

pHH = pTT =
1

2
and pHT = pTH = 0

The means of the two random variables X and Y are:

µ =
∑
i,j

pijxi

ν =
∑
i,j

pijyj

and therefore the covariance of the two random variables is:

ΣXY =
∑
i,j

pij(xi − µ)(yj − ν) (278)

If X and Y are continuous random variables, their joint probability distribution is a function:

p(x, y) : R2 → R≥0 (279)

which encodes probability in the sense that:

Prob(X ∈ [a, b] and Y ∈ [c, d]) =

∫ b

a

∫ d

c
p(x, y)dydx (280)

With this in mind, the covariance of the random variables X and Y is:

ΣXY =

∫ ∞
−∞

∫ ∞
−∞

p(x, y)(x− µ)(y − ν)dxdy (281)

where µ and ν are the means of X and Y , defined by (270).

Remark. The notion (279) is necessary because the random variables X and Y may be dependent
on each other: mathematically, this means that where X is on the real line might impact where Y
is. For example, if X = Y , then X and Y cannot be at different points of the real line, so in this
case the function p(x, y) is concentrated on the diagonal in R2.

91

An important special case is when two variables X and Y are independent of each other. In the
discrete case, this means that the probabilities (277) are given by pij = aibj , where a1, a2, ... and
b1, b2, ... are the probabilities of X and Y separately. In the continuous case, the fact that X and
Y are independent means that the joint probability distribution (279) is given by:

p(x, y) = a(x)b(y)

where a and b are the probability distributions of X and Y , respectively. In this case, the position
of X on the real line has no impact on the position of Y and vice versa. The covariance (280) is:

ΣXY =

∫ ∞
−∞

∫ ∞
−∞

a(x)b(y)(x− µ)(y − ν)dxdy =

(∫ ∞
−∞

a(x)(x− µ)dx

)(∫ ∞
−∞

b(y)(y − ν)dy

)
= 0

(the last equality is a consequence of (269) and (270)). We conclude that the covariance of two
independent random variables is 0, which is just the intermediate case of the following principle:

• the more positive the covariance, the more correlated the random variables are

• the more negative the covariance, the more anti–correlated the random variables

For any random variables X and Y (discrete or continuous), the Cauchy-Schwartz inequality states:

|ΣXY | ≤
√

ΣXXΣY Y (282)

In other words, the covariance is bounded by the geometric mean of the variances. Therefore, if the
variances of X and Y are fixed, the maximum covariance happens when X = Y (the two random
variables are as correlated as possible) and the minimum covariance happens when X = −Y (the
two random variables are as anti–correlated as possible).

Definition 27. The covariance matrix of two random variables X and Y is:

K =

[
ΣXX ΣXY

ΣY X ΣY Y

]
(283)

Since ΣXY = ΣY X , the covariance matrix is symmetric. But it is actually positive semidefinite,
because its trace is positive (as ΣXX and ΣY Y are the variances of X and Y) and its determinant is
≥ 0 according to (282). Moreover, the covariance matrix is positive definite unless its determinant
is 0, which happens if the variables X and Y are perfectly correlated (e.g. when X = Y).

Let’s compute the covariance matrix of discrete random variables in terms of the probabilities (277):

K =

k∑
i,j=1

pij

[
(xi − µ)2 (xi − µ)(yj − ν)

(xi − µ)(yj − ν) (yj − ν)2

]
=

k∑
i,j=1

pij

[
xi − µ
yj − ν

] [
xi − µ yj − ν

]
︸ ︷︷ ︸ (284)

The underbraced term is a positive semidefinite symmetric matrix, since it is of the form vvT .
The pij ’s are non-negative numbers, and it is easy to show that a non-negative linear combination
of positive semidefinite matrices is positive semidefinite (for example, using the energy criterion
(236)). This gives another proof of the fact that the covariance matrix is positive semidefinite.

92

Definition 28. Given n random variables X1, ..., Xn, their covariance matrix is:

K =

ΣX1X1 . . . ΣX1Xn
...

. . .
...

ΣXnX1 . . . ΣXnXn

 (285)

The covariance matrix is a useful tool for determining how (in)dependent a collection of random
variables is, for example if X1 = age, X2 = height, X3 = weight among a population. In fact, it is
often convenient to put all of the random variables in a vector, called a random vector:

X =

X1

...
Xn

 (286)

Let p1, p2, ... to be the probability that X takes a certain number of vector values x1,x2, ..., where

xi =

x1,i

...
xn,i

. In the setting of two random variables in (277), the probabilities in question were

denoted by pij = Prob

([
X
Y

]
=

[
xi
yj

])
. Then the mean of the random vector (286) is:

µ =
∑
i

pixi

and the covariance matrix is:

K =
∑
i

pi

 (x1,i − µ1)2 . . . (x1,i − µ1)(xn,i − µn)
...

. . .
...

(x1,i − µ1)(xn,i − µn) . . . (xn,i − µn)2

 =

=
∑
i

pi

x1,i − µ1

...
xn,i − µn


x1,i − µ1

...
xn,i − µn


T

=
∑
i

pi(xi − µ)(xi − µ)T = E
[
(X − µ)(X − µ)T

]
(287)

Apart from the fact that vector and matrix notation gives the neat formula (287) for the covariance
matrix, the equality above proves that the covariance matrix of any number of random variables is
positive semidefinite. Moreover, any linear combination of the random variables X1, ..., Xn:

X = cTX for some c =

c1

...
cn


is a random variable (for example, in the age–height–weight example, X could be 2·age−3·height+
7 · weight). The variance of X can be recovered from the covariance matrix K as:

E
[
(X − µ)2

]
= E

[
(X − µ)(X − µ)T

]
= E

[
(cTX − cTµ)(cTX − cTµ)T

]
=

= E
[
(cTX − cTµ)(XTc− µTc)

]
= E

[
cT (X − µ)(XT − µT)c

]
= cTKc (288)

93

which is precisely the energy of the vector c with respect to the positive semidefinite covariance
matrix K. The matrix K is positive definite unless the energy is 0 for a non-zero vector c. Hence:

the covariance matrix is positive definite, unless

the random variables X1, ..., Xn are dependent

where “dependent” means that there exists some linear combination of X1, ..., Xn which is constant
(since the constant random variables are precisely those with 0 variance).

Example 5. Here’s a quick application of this matrix formalism. Suppose you have random vari-
ables X and Y , with means µ and ν, and variances ΣXX and ΣY Y . What are the mean and
variance of the random variable Z = X + Y ? You can compute these by writing:

Z =
[
1 1

] [X
Y

]
The mean of Z is just:

ρ =
[
1 1

] [µ
ν

]
= µ+ ν

which is perhaps not so surprising. However, the variance of Z is given by formula (288):

ΣZZ =
[
1 1

] [ΣXX ΣXY

ΣXY ΣY Y

] [
1
1

]
= ΣXX + ΣY Y + 2ΣXY

Thus, the variance of a sum of random variables involves not only the sum of the individual vari-
ances, but also a cross-term involving the covariance of the two variables.

In this language, we can ask what is the meaning of diagonalizing the covariance matrix:

K = QDQT (289)

where D is a diagonal matrix with non-negative eigenvalues, and Q has orthonormal columns.
This procedure is called principal component analysis (PCA) in probability and statistics.
Mathematically, this entails defining the following random vector:Y1

...
Yn

 = Y := QTX whose mean will be ν = QTµ (290)

This simply means that the entries Y1, ..., Yn of Y are all random variables, given by certain
linear combinations of the random variables that make up X. In this case, the covariance matrix
corresponding to the random vector Y is:

E
[
(Y − ν)(Y − ν)T

]
= E

[
QT (X − µ)(X − µ)TQ

]
= QTKQ = D =

Σ1 . . . 0
...

. . .
...

0 . . . Σn


Since D is a diagonal matrix, this implies that the random variables Y1, ..., Yn are mutually in-
dependent (since their pairwise covariances are 0), and that Σi is the variance of Yi. Therefore,
the diagonalization (289) corresponds to finding n linear combinations of the random variables
X1, ..., Xn, denoted by Y1, ..., Yn above, which are pairwise independent random variables.

94

Lecture 30 (November 22) Review of the previous two lectures

Lecture 31 (November 25) Reading: section 12.3

Last time, we discussed random vectors and covariance matrices in the discrete case, but you prob-
ably won’t be surprised to hear that the formalism can be extrapolated to continuous probability
distributions. Generalizing (279), a function:

p(x1, ..., xn) : Rn → R≥0 (291)

is called the joint probability distribution of a random vector X such as (286). The covariance
matrix of this random vector is given by (287), if one replaces the sum by an integral:

K = E
[
(X − µ)(X − µ)T

]
=

∫ ∞
−∞

...

∫ ∞
−∞

p(x1, ..., xn)

x1 − µ1

...
xn − µn


x1 − µ1

...
xn − µn


T

dx1...dxn (292)

where:

µ =

µ1

...
µn

 =

∫ ∞
−∞

...

∫ ∞
−∞

p(x1, ..., xn)

x1

...
xn

 dx1...dxn (293)

A rather simple case is a random vector Y consisting of n independent normal distributions
Y1, ..., Yn, i.e. consider the following joint probability distribution:

p(y1, ..., yn) =
e
− (y1−ν1)2

2Σ1
−...− (yn−νn)2

2Σn√
(2π)nΣ1...Σn

(294)

(we denote them by y’s instead of x’s to avoid confusions later on). As a consequence of the identity:

−(y1 − ν1)2

2Σ1
− ...− (yn − νn)2

2Σn
= −1

2

y1 − ν1

...
yn − νn


T

D−1

y1 − ν1

...
yn − νn

 , where D =

Σ1 . . . 0
...

. . .
...

0 . . . Σn


we may write formula (292) as:

D =

∫ ∞
−∞

...

∫ ∞
−∞

e−
1
2

(y−ν)TD−1(y−ν)√
(2π)n detD

(y − ν)(y − ν)Tdy (295)

where y =

y1

...
yn

 and dy = dy1...dyn. Indeed, this is because the off-diagonal terms of the covariance

matrix are 0 due to independence, while the diagonal terms are simply the variances of Y1, ..., Yn.

Now let’s consider a general vector X of normal distributions X1, ..., Xn. The setup here is that
we consider an arbitrary µ ∈ Rn and an arbitrary positive definite matrix S, and let:

p(x1, ..., xn) =
e−

1
2

(x−µ)TS−1(x−µ)√
(2π)n detS

(296)

95

Remark. The reason why we require S to be positive definite is that the quantity:

E =
1

2
(x− µ)TS(x− µ)

can be interpreted as the kinetic energy of some physical system of particles with velocities x1, ..., xn
(the fact that we subtract the average µ means that we choose our coordinates so that the center of
mass of the system stands still). The expression e−E is called the Boltzmann factor in physics. Its
presence means that velocity vectors (x1, ..., xn) with lower energy arise with higher probability and
those with higher energy arise with lower probability.

In the situation at hand, the covariance matrix (292) can be written as:

K =

∫ ∞
−∞

...

∫ ∞
−∞

e−
1
2

(x−µ)TS−1(x−µ)√
(2π)n detS

(x− µ)(x− µ)Tdx (297)

To summarize: the entries of the random vector X =

X1

...
Xn

 whose covariance matrix is K are no

longer independent. However, we can find appropriate linear combinations which are independent,
by diagonalizing the matrices S and K. This is PCA for continuous probabilities, and it goes
something like this. First diagonalize the positive definite matrix S that appears in (296):

S = QDQT

where Q is orthogonal and D is diagonal (with positive diagonal entries). Then if we perform the
substitution Y = QTX ⇔X = QY (note that the mean of Y is ν = QTµ), then (297) becomes:

K =

∫ ∞
−∞

...

∫ ∞
−∞

e−
1
2

(y−ν)TD−1(y−ν)√
(2π)n detS

Q(y − ν)(y − ν)TQTdy =

= Q

[∫ ∞
−∞

...

∫ ∞
−∞

e−
1
2

(y−ν)TD−1(y−ν)√
(2π)n detD

(y − ν)(y − ν)Tdy

]
QT

(295)
= QDQT = S

(we are using detS = detD and the fact that the determinant of the orthogonal matrix Q is ±1).

Since the covariance matrix of the random vector Y =

Y1

...
Yn

 is diagonal, the random variables

Y1, ..., Yn are independent normal distributions. Hence under orthogonal linear transformations Q,
random vectors transform as X = QY , and their covariance matrix transforms as K = QDQT .

The principles of least squares also find their place in probability. Suppose A is a matrix, that
b1, ..., bm are random variables with variance Σ1, ...,Σm, and you are trying to minimize the error
in the least squares approximation to the linear system:

Av ∼ b =

 b1...
bm

 (298)

96

The appropriate notion of error in the experiment is:

ε =

n∑
i=1

(b−Av)2
i

Σi
(299)

Indeed, if all the variances Σ1, ...,Σn were equal, then the error would be a multiple of the square
of the length of the vector b−Av, so we would be solving the ordinary least squares problem. But
if the Σi’s are different, this means that we weigh the error by the inverse of the variance: those
measurements bi with smaller (respectively larger) variance are more (respectively less) reliable,
hence they will weight more (respectively less) in the error. Still, the problem of minimizing (299)
is actually equivalent with the ordinary least squares problem for the related system:

A′v ∼ b′, where A′ = D−
1
2A, b′ = D−

1
2b and D =

Σ1 . . . 0
...

. . .
...

0 . . . Σn


Therefore, the least squares solution reads:

v = (A′
T
A′)−1A′

T
b′ = (ATD−1A)−1ATD−1b (300)

In terms of the system (298), this is known as weighted least squares. The most general scenario
is when the random variables b1, ..., bn are not independent, and they are related by the a covariance
matrix K. In this case, the appropriate analogue of the solution (300) is:

v = (ATK−1A)−1ATK−1b (301)

and it is known as generalized least squares. It is precisely the choice of v which minimizes the
error, whose appropriate definition is:

ε = (b−Av)TK−1(b−Av)

Another question you might ask is what is the covariance matrix of the solution (301) in terms
of the covariance matrix K = E[bbT]. Assume that the random vector b has zero mean, to keep
notations simple (it is reasonable to expect that measuring errors will have zero mean). Then:

E[vvT] = (ATK−1A)−1ATK−1E[bbT]︸ ︷︷ ︸
K

K−1,TA(ATK−1,TA)−1 =

= (ATK−1A)−1ATK−1,TA(ATK−1,TA)−1 = (ATK−1A)−1

I hope this has been a convincing introduction (although we have just scratched the surface) of
how linear algebra is useful in probability.

Lecture 32 (November 27)

Statistics is the sibling of probability, but they differ slightly in their goals. While probability
anticipates the likelihood of future events, statistics interprets data from past events. Let’s say we
are performing an experiment that measures a certain quantity. We run the experiment n times
and we get the following values, called samples:

x1, ..., xn (302)

The collection of samples is often called the data set.

97

Definition 29. The mean of the data set (302) is:

µ =
1

n
(x1 + ...+ xn) (303)

The variance of the data set (302) is:

Σ =
1

n− 1

[
(x1 − µ)2 + ...+ (xn − µ)2

]
(304)

The standard deviation is the square root of the variance: σ =
√

Σ.

As n→∞, the quantities (303) and (304) tend to the mean and variance of the underlying proba-
bility distribution of whatever we’re measuring. For example, if you’re measuring a quantity which
naturally obeys a normal distribution (e.g. the numeric grades in a class), when you plot sufficiently
many of them (i.e. graph the function f(x) = number of students who got grade x), then your plot
will look like a bell curve.

Remark. You might wonder why we’re using the denominator n− 1 in (304) instead of n, which
might seem much more appropriate from a probability point of view. The discrepancy, namely n

n−1
is called Bessel’s correction, and we will explain it from the point of view of linear algebra later
on. It is not so significant when n is large, but it makes a difference when n is small.

Explicitly, the mean is just measuring the average of the samples in question, while the variance
is measuring how far the samples are from their mean. These notions can be presented in the
language of linear algebra, by introducing the vector:

o =

1
...
1

 and x =

x1

...
xn


Then the mean is equal to:

µ =
oTx

oo
(305)

and thus oµ can be interpreted as the projection of the vector of samples x onto the vector o.
Meanwhile, the variance is:

Σ =
||x− oµ||2

n− 1
=
||Px||2

n− 1
(306)

where P = I− ooT

oTo
is the projection matrix onto the orthogonal complement to o. This orthogonal

complement is an n− 1 dimensional vector space, and indeed we have:

P =


n−1
n . . . − 1

n
...

. . .
...

− 1
n . . . n−1

n

 (307)

It is elementary to show that the diagonalization of P is:

P = QDQT , where Q is orthogonal and D =


1 . . . 0 0
...

. . .
...

...
0 . . . 1 0
0 . . . 0 0

 (308)

98

Therefore, if the n entries of the sample vector x are drawn from a normal probability distribution
with mean 0 and variance 1, so will the entries of the vector y = QTx (this is because multiplying
by orthogonal matrices does not change length). But we have:

||Px||2 = ||QDQTx||2 = ||Dy||2 = y2
1 + ...+ y2

n−1 (309)

and so the variance of (309) is n− 1. We have just shown that the variance of the quantity ||Px||2
is n−1

n times that of the quantity ||x||2, and Bessel’s correction is simply a way to correct for this.

Now assume we have two sets of data: x1, ..., xn and y1, ..., yn (say age and height) and we want to
see how correlated they are. As in the case of probability, the appropriate notion is the covariance:

Σxy =
1

n− 1

[
(x1 − µ)(y1 − ν) + ...+ (xn − µ)(yn − ν)

]
(310)

where µ and ν are the means of the samples x1, ..., xn and y1, ..., yn, respectively. Note that Σxx

is just the variance of the sample set x1, ..., xn, so the reason why we use the denominator n − 1
instead of n in (310) is still Bessel’s correction, as explained above. In terms of vectors:

x =

x1

...
xn

 and y =

y1

...
yn


the covariance takes the form:

Σxy =
xTPy

n− 1
(311)

since P 2 = P , P T = P (being a projection matrix) and Px =

x1 − µ
...

xn − µ

, Py =

y1 − ν
...

yn − ν

. Also:

|Σxy| ≤
√

ΣxxΣyy (312)

just like in the case of probability. The covariance is greatest (or lowest) when x and y are the
most correlated (anti-correlated). If the two data sets are independent, then you would expect the
covariance to be very close to 0, and actually tend to 0 as you take more and more samples n→∞.

Finally, assume we have m data sets, so let’s put them in an n×m matrix:

A =

x1 y1 z1 . . .
...

...
...

. . .

xn yn zn . . .


If the x’s, y’s, z’s ... have means µ, ν, ξ ..., then:

PA =

x1 − µ y1 − ν z1 − ξ . . .
...

...
...

. . .

xn − µ yn − ν zn − ξ . . .

 (313)

99

The covariance matrix of the data sets is the m×m matrix defined by:

K =


Σxx Σxy Σxz . . .
Σyx Σyy Σyz . . .
Σzz Σzy Σzz . . .
...

...
...

. . .

 (314)

and is given by the formula:

K =
ATPA

n− 1
(315)

To see this, just note for instance that the (1, 2) entry of the matrix identity (315) is precisely (311).

Principal component analysis (PCA) involves diagonalizing the covariance matrix. If:

K = QDQT

with Q orthogonal and D diagonal (with positive diagonal entries) then (315) reads:

QDQT =
ATPA

n− 1
⇒ D =

(AQ)TP (AQ)

n− 1

This means that the data set B = AQ (whose columns are linear combinations of the constituent
data sets of A) has diagonal covariance. Therefore, the constituent data sets of B are mutually
independent. Moreover, if the i–th diagonal entry of D is the largest (respectively smallest) then
the i–th constituent data set of B has the largest (respectively smallest) variance. Therefore, this
approach allows us to isolate those linear combinations in a collection of data sets which produce
the most variance from those which produce the least variance. For example, consider the plot:

0 2 4 6 8 10
0

2

4

6

8

10

of two data sets: the entries of x =

x1

...
x5

 are on the horizontal axis and the entries of y =

x1

...
x5



100

are on the vertical axis. Explicitly, they are given by

x =


2
3
4
7
8

 and y =


4
3
5
6
9


and suppose we wish to compute their covariance matrix, and to apply PCA to them (i.e. to find
linear combinations of the data sets which are independent, and to compute the variance of those).
Start by constructing the matrix:

A =
[
x y

]
=


2 4
3 3
4 5
7 6
8 9


Then compute:

PA =
1

5


−14 −7
−9 −12
−4 −2
11 3
16 18

 (316)

Then the covariance matrix is given by formula (315):

K =
1

20

[
134 107
107 106

]
You could perform PCA by diagonalizing the matrix K, or you could instead compute the SVD of
the matrix PA. Let’s opt for the latter:

PA = UΣV T where Σ =



√
24 + 1

5

√
11645 0

0
√

24− 1
5

√
11645

0 0
0 0
0 0


and U and V are orthogonal matrices (but their entries are really big expressions involving square
roots; you can use any programming language with a “Singular Value Decomposition” function if
you really want to compute them). Then the covariance matrix is given by:

K =
V ΣTUTUΣV T

5− 1
= V

[
6 + 1

20

√
11645 0

0 6− 1
20

√
11645

]
V T (317)

The meaning of this is the following: the entries of the 2 × 2 orthogonal matrix V teach you how
to construct mutually independent combinations of the data sets x and y. Explicitly, if:

V =

[
v11 v12

v21 v22

]
101

then the data sets: [
x′ y′

]
=
[
x y

]
V ⇔

{
x′ = v11x+ v21y

y′ = v12x+ v22y

are mutually independent. Moreover, the variances of x′ and y′ are the two numbers on the di-
agonal of (317), and numerically they are roughly equal to 11.39 and 0.6. This implies that the
linear combination y′ of our two data sets has very little variance, and so it is roughly constant.
Meanwhile, the linear combination x′ is very “noisy”, since it has high variance.

Lecture 33 (December 2) Reading: section 10.3

A particular kind of matrix that arises in the study of probability is the following.

Definition 30. A Markov matrix (or “stochastic matrix”) is a square matrix with all entries
positive, such that the entries on every column add up to 1.

The notion above is sometimes called a “left Markov matrix”, to contrast it with the transposed
notion of “right Markov matrix”, wherein the entries on every row add up to 1. One of the main
application of Markov matrices is the following setup, called a Markov process. Suppose we
have a system which can be described as initially occupying a finite number of states s1, ..., sn
with probabilities v1, ..., vn. Suppose that our system changes once every second 4 and that the
probability of moving from state j to state i from one second to the next is a number pij > 0. Let’s
put these numbers in a matrix:

P =

p11 . . . p1n

...
. . .

...
pn1 . . . pnn

 (318)

and note that P is indeed a Markov matrix: the sum of the entries on its j–th column is the
probability of moving from state j to some other state from one second to the next, which has to
be 1. So what is the probability that we find ourselves in state i after one second? Well, since
initially we were in state 1 with probability v1, ..., in state n with probability vn, then:(

probability of state i after one second
)

= pi1v1 + ...+ pinvn

This just says that if v =

v1

...
vn

 records the probabilities of the n states at initial time, then:

Pv =

p11v1 + ...+ p1nvn
...

pn1v1 + ...+ pnnvn


records the probabilities of the n states after one second. Going further, this implies that:

P 2v, P 3v, ..., P kv, ...

4Or minute, or hour, or day etc, but let’s work with “second” just to have a consistent convention

102

record the probabilities of the n states after 2,3,..., k,... seconds. So repeated applications of the
Markov matrix P to the initial probabilities of the states reveals the probabilities of the states after
any amount of time. Then a very interesting question is what happens to the system as time goes
to ∞? Fortunately, we know that a good way to compute powers of a matrix is to diagonalize it:

P = V

λ1 . . . 0
...

. . .
...

0 . . . λn

V −1

If v1, ...,vn are the eigenvectors of P (i.e. the columns of V) then we have the identity:

if v = c1v1 + ...+ cnvn ⇒ P kv = c1λ
k
1v1 + ...+ cnλ

k
nvn (319)

So to compute the long-term behavior of the system, write the initial vector of probabilities v as
a linear combination of the eigenvectors of P , and then just apply (319) for any k. But now let’s
do some qualitative analysis. As a consequence of (319), the dominant rate of growth of P kv is
comparable to the k–th power of its largest eigenvalue.

• if P has an eigenvalue > 1 (in absolute value) then some entries of P kv would tend to ∞

• if all the eigenvalues of P are < 1 (in absolute value), then P kv would tend to 0

None of the two options above make any sense, because the vector P kv indicates the probabilities
of the states at time t = k seconds; as such, its entries are positive numbers which add up to 1. So
it seems that the only thing which makes qualitative sense is if P had some eigenvalues of size 1,
and all the other eigenvalues were smaller than 1. Indeed, this is what happens due to the following
fact, known as the Perron-Frobenius Theorem:

Fact 22. If a square matrix A has positive entries, then it has a unique largest eigenvalue λmax > 0.
This eigenvalue is real, and all other eigenvalues are smaller than λmax in absolute value.

The eigenvalue λmax has algebraic and geometric multiplicity one; the unique (up to scalar) eigen-
vector can be chosen to have all positive entries.

Moreover, in the Markov matrix case (all column sums are 1) the largest eigenvalue is λmax = 1. If
we let vmax be the corresponding eigenvector, then we have:

Pvmax = vmax

hence vmax is a stationary vector of probabilities: it is unchanged by the evolution of our system.
Moreover, formula (319) and Fact 22 show that any initial vector of probabilities v approaches the
unique stationary vector vmax as time k →∞.

Let’s give an example of a Markov matrix: there are 5 boxes in a row, and initially there’s a cat
in box 1 and a mouse in box 5. Every second, each animal moves to an adjacent box with equal

103

probability (if the animal is in one of the outermost boxes, they must jump to the next one inward).
The process ends when the cat and mouse find themselves in the same box, at which point the cat
eats the mouse. To describe this game mathematically, we consider the various states of the system
to be the combinations (cat’s box, mouse’s box):

• state 1: the cat is in box 1 and the mouse is in box 3

• state 2: the cat is in box 1 and the mouse is in box 5

• state 3: the cat is in box 2 and the mouse is in box 4

• state 4: the cat is in box 3 and the mouse is in box 5

• state 5: the cat and mouse are in the same box

You may ask where are all the other combinations of boxes. First of all, any jump preserves the
sum of parities of the animals’ boxes. Since the initial state is (1, 5), the animals’ boxes must always
be (odd,odd) or (even,even): they must always be an even number of boxes away from each other.
Secondly, there’s no reason to consider the cases when the cat’s box is to the right of the mouse’s
box, because they can’t get to such a situation without the cat eating the mouse first. In terms
of the 5 states above, the Markov matrix that records the probabilities of going from one state to
another is:

P =


0 0 1

4 0 0
0 0 1

4 0 0
1
2 1 0 1

2 0
0 0 1

4 0 0
1
2 0 1

4
1
2 1



The initial condition is v =


0
1
0
0
0

, but the long-term behavior of the system approaches vmax =


0
0
0
0
1

,

namely the eigenvector of P corresponding to the largest eigenvalue λmax = 1. This means that, as
time goes to∞, the cat is almost certain in probability to catch the mouse (in fact, a finer analysis
shows that the mouse’s expected time of survival is just 4.5 seconds).

A related subject is the study of population growth. This is a situation where you have a number
of species sharing an environment (say rabbits and wolves). You can put their values in a vector:[

r0

w0

]
where rn is the number of rabbits and wn is the number of wolves at the end of year n. You are
interested in the evolution of these populations from one year to the next. We assume the model

104

of population growth obeys a linear evolution formula, i.e.:[
rk
wk

]
=

[
4 −2
1 1

] [
rk−1

wk−1

]
(this is not very realistic, but in practice this can serve as an approximation for more complicated
models). The goal is to say something about the long term evolution of the populations. It’s pretty
straightforward to see that: [

rk
wk

]
=

[
4 −2
1 1

]k [
r0

w0

]
To raise the matrix above to the k–th power, we must diagonalize it, which is pretty straightforward:[

4 −2
1 1

]
= V DV −1

where:

V =

[
2 1
1 1

]
and D =

[
3 0
0 2

]
Then the long-term growth of the populations is given by:[

rk
wk

]
= V

[
3k 0
0 2k

]
V −1

[
r0

w0

]
The conclusion is that, up to linear combinations, the number of rabbits and wolves grows expo-
nentially (and this rate of growth does not care about the initial condition).

Lecture 34 (December 4) Reading: section 10.1

One of the basic notions in combinatorics and computer science is graphs.

Definition 31. A graph is a collection of vertices (or nodes) connected by edges.

It is important to stress that the geometric location of the vertices and the shape of the edges is
not important when dealing with graphs. All that matters is the abstract notion that certain pairs
of vertices are connected. Therefore, a graph is encoded by the following data:

• The set {1, .., n} (which are simply labels for the vertices)

• A certain set of pairs (i, j) for various i 6= j among {1, ..., n} (the edges)

There are generalizations of graphs, which allow edges (i, i) (called “loops”) and which also allow
multiple edges between any pair (i, j) of vertices, but we will not be studying these in this class.
However, we will assume that all of our edges are oriented, i.e. they go “from” vertex i “to” vertex j.

105

Examples include cities (vertices) connected by roads (edges), communication nodes (vertices)
connected by wires (edges) and so on. To any graph, we may associate the following matrices:

the n× n adjacency matrix A

the n×m incidence matrix B

where n is the number of vertices and m is the number of edges. By definition:

Aij =

{
1 if vertices i and j are connected by an edge

0 otherwise
(320)

Bik =


−1 if edge k comes out of vertex i

1 if edge k goes into vertex i

0 otherwise

(321)

The latter notation presupposes a labeling of the edges with the numbers 1, ...,m. Therefore, the
matrix B has a single 1, a single −1 and the rest 0’s on every column. We may also define the
n× n Laplacian matrix by

Lij =


di if i = j

−1 if vertices i and j are connected by an edge

0 otherwise

where di is the degree of the vertex i, namely the number of edges at that vertex. We have:

L = BBT and L = diagonal matrix−A (322)

which shows the fact that both L and A are symmetric.

Example 6. Consider the (2, 3) complete bipartite graph: it has 2 + 3 = 5 vertices, and 2 · 3 = 6
edges: there is an edge from any one of the vertices {1, 2} into any one of the vertices 3, 4, 5. Its
adjacency matrix is:

A =


0 0 1 1 1
0 0 1 1 1
1 1 0 0 0
1 1 0 0 0
1 1 0 0 0


its Laplacian matrix is:

L =


3 0 −1 −1 −1
0 3 −1 −1 −1
−1 −1 2 0 0
−1 −1 0 2 0
−1 −1 0 0 2


and its incidence matrix is:

B =


−1 −1 −1 0 0 0
0 0 0 −1 −1 −1
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1


106

The following facts show how the matrices A,B,L encode various things about the graph.

Fact 23. The (i, j) entry of Ak is the number of length k paths starting at i and ending at j. 5.

Fact 24. The rank of B is n minus the number of connected components of the graph. 6

Fact 25. All cofactors of the matrix L are equal to the number of spanning trees in the graph. 7

We have already encountered graphs in the setting of electric circuits. Take for example:

where the edges are conducting wires connecting certain pairs of nodes (the vertices), and the
orientation of an edge dictates which direction the current is flowing. The incidence matrix of this
graph is:

B =


−1 0 0 0 1 0 0
1 −1 0 0 0 1 0
0 1 −1 0 0 0 −1
0 0 1 −1 0 −1 0
0 0 0 1 −1 0 1


We are interested in the vector of currents passing through each of the wires:

w =

I1

...
I7


5A path of length k is a sequence of k contiguous edges which start at vertex i and end at vertex j. If we wanted

to only count oriented paths, i.e. sequences of edges where we always move in the direction of the arrows, then we
would need to replace the adjacency matrix A by a related matrix. Try and guess what that matrix would have to be

6A connected component is a subset S ⊂ {1, ..., n} of vertices such that any i, j ∈ S are connected by a path, and
no i ∈ S, j /∈ S are connected by an edge

7A spanning three is a collection of n− 1 edges which connect all the n vertices of our graph

107

(we write 7 for the number of wires to keep in line with the example pictured on the previous page).
Then Kirchhoff’s law for currents states that, at each node in the circuit, the total current in is
equal to the total current out. In terms of matrices, this reads:

Kirchhoff’s law: Bw = 0 (323)

Therefore, the vector of currents w is constrained to lie in the nullspace of B. (more generally, you
may put a non-zero vector in the right-hand side of (323), signifying current sources/sinks being
placed at the nodes). Another important vector of our circuit consists of voltages at the nodes:

v =

V1

...
V4


The entries of the vector BTv measure the voltage drops across the 7 wires in the circuit. Assuming
all the wires have the same resistance R (e.g. they are made from the same material), then Ohm’s
law states that the voltage drop across every wire is equal to R times the current across that wire.
As a vector equation, this reads:

Ohm’s law: BTv = Rw (324)

If you combine (323) and (324), you arrive at:

BBTv = 0 (325)

But now recall (322): L = BBT is the Laplacian matrix of the grap, so v ∈ N(L).

Remark. In real-life circuits, the equation (325) is replaced by:

BCBTv = a

where C is a diagonal matrix which keeps track of the conductance (inverse resistance) of each wire
in our circuit, and a is the vector keeping track of the voltages of outside power sources at each node.

Lecture 35 (December 9) Reading: section 10.5

We will now study Fourier series, which is a very useful application of linear algebra in analysis,
and from there in applied mathematics and engineering. But the first difference is that one does
not study finite-dimensional vector spaces, but infinite-dimensional ones.

Definition 32. Let V be the vector space of differentiable functions f : R→ R with period 2π, i.e.:

f(x+ 2π) = f(x) ∀x ∈ R (326)

Such functions are called periodic.

108

The fact that we only look at periodic functions might seem like a restriction, but it’s suitable for
many applications (think signals, waves). Also, the fact that the period is 2π rather than any other
number is not a meaningful restriction, but more of a notational convention. The reason for this is
that if f(x) is a function with period L, then f(2πx

L) is a function with period 2π.

The fact that the set of f ’s as in (326) is a vector space is easy to see, basically because any linear
combination of differentiable periodic functions is differentiable and periodic (this entails the fact
that all of these functions have the same period, but we have already assumed that this is the case).
To convince you that it is not a finite-dimensional vector space, consider the functions:

1, cosx, cos(2x), cos(3x), ..., sinx, sin(2x), sin(3x), ... (327)

We claim that all of the infinitely many functions in (327) are linearly independent: there is no
linear combination of these functions which is equal to the zero function 8. Therefore, the space
V is an entirely new beast from the vector spaces Rn that we have studied in most of our course.
However, it does share a lot of features with finite-dimensional vector spaces, such as the existence
of a dot product like operation, the inner product of functions:

(f, g) =

∫ π

−π
f(x)g(x)dx (328)

9 In other words, the inner product takes two functions and produces a number, just like the dot
product took two vectors and produced a number. And just like the length of a vector is its dot
product with itself, we have the norm of a function:

||f ||2 = (f, f) =

∫ π

−π
f(x)2dx (329)

which is a positive real number (unless f = 0, in which case the norm is 0). Here’s one important
fact: the functions (327) are all mutually orthogonal with respect to the inner product (328):

(sin kx, sin lx) = 0, unless k = l, in which case (sin kx, sin kx) = π (330)

(cos kx, cos lx) = 0, unless k = l, in which case (cos kx, cos kx) = π (331)

(sin kx, cos lx) = 0, for all k, l (332)

The formulas above also hold if k or l are 0 (except that sin 0 = 0 and cos 0 = 1 imply that (0, 0) = 0
and (1, 1) = 2π). So (327) is a collection of linearly independent, mutually orthogonal elements of
the vector space V . If this were a finite-dimensional vector space, we could hope that the collection
(327) is also a basis. Well, something pretty close to this actually happens:

Fact 26. Any function f ∈ V can be written as a linear combination of the functions (327), but
the linear combination has to be infinite. In other words, we can write any function f ∈ V as:

f(x) = a0 + a1 cosx+ a2 cos 2x+ ...+ b1 sinx+ b2 sin 2x+ ... (333)

The numbers a0, a1, a2, ..., b1, b2, ... are called the Fourier coefficients of f(x), and the sum (333)
is called the Fourier series of f(x). It is a theorem that the Fourier series converges.

8Note the emphasis on the word “linear”, since there are non-linear combinations of the above functions which
are equal to the zero function, for example (sinx)2 + (cosx)2 − 1 = 0. However, when studying vector spaces, all we
are concerned with are linear combinations

9The fact that the integral goes from −π to π is not important. You could have taken it over any interval of length
2π and the value of the integral would have been unchanged, due to the periodicity of the functions f and g

109

In signal processing (and I guess, in music) the functions cos kx, sin kx are called harmonics, so the
Fourier series is basically just a way to decompose an arbitrary periodic signal f(x) into harmonics.
As you would expect, in real-life examples the coefficients an, bn tend to 0 as n → ∞, so only the
first few harmonics of a signal dominate it.

Linear algebra also gives us a very practical way to compute the Fourier coefficients of any function.
Because the functions (327) are orthogonal, you can compute these coefficients by computing the
inner product of f with any one of these functions:

(f, 1) = a0(1, 1) ⇒ a0 =
1

2π

∫ π

−π
f(x)dx (334)

(f, cos kx) = ak(cos kx, cos kx) ⇒ ak =
1

π

∫ π

−π
f(x)(cos kx)dx (335)

(f, sin kx) = ak(sin kx, sin kx) ⇒ bk =
1

π

∫ π

−π
f(x)(sin kx)dx (336)

Formulas (334), (335), (336) show that if you have a machine that computes various integrals of
f (and there are many ways for getting approximate answers) this immediately gives a recipe for
computing the Fourier series of f . Here’s an example of this setup. Consider the function:

f(x) = x for all x ∈ [−π, π] (337)

then extended to all real numbers x so that it has period 2π (note that this function has a disconti-
nuity at x = π; all the facts in this class still hold in this slightly more general setup). To compute
its Fourier series, we need to compute the following integrals:

(f, cos kx) =

∫ π

−π
x(cos kx)dx = 0

(f, sin kx) =

∫ π

−π
x(sin kx)dx = (−1)k−1 2π

k

which can be done e.g. by integration by parts. Therefore (334)–(336) imply the Fourier series:

f(x) =
2 sinx

1
− 2 sin 2x

2
+

2 sin 3x

3
− 2 sin 4x

4
+ ... (338)

The fact that the Fourier series only contains sines in this example should not be surprising; after
all, the particular function f(x) in (337) is odd. But then let us compute the norm squared of the
function (337). On one hand, we have:

(f, f) =

∫ π

−π
x2dx =

2π3

3

On the other hand, the norm squared of the right-hand side of (338) is easy to compute, because
the functions sin kx have pairwise zero inner product:

(f, f) =
4π

12
+

4π

22
+

4π

32
+

4π

42
+ ...

By equating the two expressions above, we arrive at the interesting identity:

π2

6
= 1 +

1

22
+

1

32
+

1

42
+ ...

110

This (and others like it) is a neat identity involving π, which gives an easy way to approximate
the powers of π. Based on the formula above, you could even approximate π using pen and paper
(assuming you remember the algorithm for taking square roots by hand).

Let’s now discuss a variant of Fourier series, wherein we replace the vector space V from Definition
32 by the vector space of differentiable functions with complex (instead of real) values:

f : R→ C

with period 2π. Because complex numbers are of the form a+ bi where a, b are real numbers, such
complex-valued functions are of the form a(x) + b(x)i where a(x), b(x) are real-valued functions.
Much of the theory concerning Fourier series carries through in the present setup, but in a sense
it’s simpler and more elegant. This is because instead of working with the particular real-valued
functions (327), you can work with the complex-valued functions:

eikx for all integers k (339)

In fact, the functions in (327) are merely the real/imaginary parts of the functions in (339). In the
complex-valued setting, the definition of inner product and norm from (328) should be changed to:

(f, g) =

∫ π

−π
f(x)g(x)dx (340)

where z denotes the complex conjugate of the complex number z. The reason for this is that you
want the norm of any function to be a non-negative real number:

||f ||2 =

∫ π

−π
|f(x)|2dx ≥ 0 (341)

and you would not have been able to achieve this without the conjugate in (340) (what I’m saying
is that if z is an arbitrary complex number, z2 is also a complex number, but zz = |z|2 is a
non-negative real number). It is then easy to compute the inner products of the functions (339):

(eikx, eilx) =

∫ π

−π
eikxeilxdx =

∫ π

−π
ei(k−l)xdx =

 ei(k−l)x

i(k−l)

∣∣∣π
−π

= 0 if k 6= l

2π if k = l

So the functions (339) are pairwise orthogonal. The complex-valued analogue of Fact 26 is that
any differentiable complex-valued periodic function has a Fourier series of the form:

f(x) =
∑
k∈Z

cke
ikx (342)

where the Fourier coefficients are given by:

ck =
1

2π

∫ π

−π
f(x)e−ikxdx (343)

The advantage of complex-valued Fourier series over real-valued ones is clear: the Fourier series
(342) is a sum of only one type of function, as opposed from two types of functions in (333).
Moreover, you only need to remember the single formula (343) for the Fourier coefficients in the
complex-valued case, instead of formulas (334), (335), (336) in the real-valued case. Moreover,
since any real-valued function can also be thought of as a complex valued function, it still has a
Fourier series of the form (342) (it’s just that you will have ck = c−k, in order for the imaginary
parts of various complex exponentials to cancel each other out).

111

Lecture 36 (December 11)

In the previous lecture, we studied the infinite-dimensional vector space of functions (and their
Fourier series, which were infinite sums) because it was the first to arise historically. But there is a
closely related version, which gives rise to a finite-dimensional space, which we will now study. This
newer version also stems from signal processing: when receiving a signal whose shape is a periodic
function f(x), you often don’t know the formula for the whole function. All you can measure are
the values of this function at finitely many times, and it makes sense to do so at equally spaced
times. So you could approximate the signal by knowing the values:

v1 = f

(
2π

N

)
, v2 = f

(
4π

N

)
, ..., vN = f (2π)

for some large natural number N . Therefore, instead of the function f(x), we record the vector:

v =

 v1

...
vN

 (344)

The vector above lives in the physical space RN . So by only recording the values of f at N points
along the real line, we have been able to reduce from the infinite-dimensional vector space V where
f lives to the finite-dimensional physical space RN where v lives. But now we recall that f also
has a Fourier series, and in fact we assume that it is only a sum of the first N harmonics:

f(x) = c1e
ix + ...+ cNe

iNx (345)

10. Then the function f(x) can also be determined by the vector of its Fourier coefficients:

c =

 c1

...
cN

 (346)

The vector c lives in frequency space RN . Even though it has the same dimension as the physical
space where (344) lives, it is a bit more intuitive to think of physical and frequency spaces as being
two completely different things. Of course, it is a very good question of how to go between these
two spaces. Plugging in the values x = 2πk

N into (345) leads to the equality:

vk =
N∑
l=1

cle
2πikl
N (347)

Let us consider the N–th order root of unity (see (228)):

ω = e
2πi
N (348)

Then (347) can be rewritten as:

v = Fc (349)

10This is not such a far-fetched restriction, since the Fourier coefficients ck tend to 0 as k →∞; the fact that f(x)
has no c0 term just means that it has integral 0, i.e. we have subtracted its average

112

for the N ×N matrix whose (k, l) coefficient is ωkl:

F =


ω1·1 ω1·2 . . . ω1·(N−1) ω1·N

ω2·1 ω2·2 . . . ω2·(N−1) ω2·N

...
...

. . .
...

...

ω(N−1)·1 ω(N−1)·2 . . . ω(N−1)·(N−1) ω(N−1)·N

ωN ·1 ωN ·2 . . . ωN ·(N−1) ωN ·N

 (350)

This matrix has the property that:

FF = N · I ⇒ F−1 =
F

N
(351)

hence the inverse F−1 is a very similar matrix to (350):

F−1 =
1

N


ω−1·1 ω−1·2 . . . ω−1·(N−1) ω−1·N

ω−2·1 ω−2·2 . . . ω−2·(N−1) ω−2·N

...
...

. . .
...

...

ω−(N−1)·1 ω−(N−1)·2 . . . ω−(N−1)·(N−1) ω−(N−1)·N

ω−N ·1 ω−N ·2 . . . ω−N ·(N−1) ω−N ·N

 (352)

(here we used the fact that ω = ω−1 = e−
2πi
N). Therefore, property (349) is equivalent to:

c = F−1v (353)

Formulas (349) and (353) take you from physical space to frequency space and back. In particu-
lar, the matrix F−1 is traditionally called the Fourier transform, but the same name could be
given to the matrix F . This is because formula (351) implies that taking the inverse of this matrix
amounts to taking the conjugates of its entries and dividing by N , both pretty harmless operations.

Being able to represent a signal in both physical ((344)) and frequency ((346)) form is important
because either of these forms is good for some things and bad for others. For example, physical
space is good when multiplying signals:

if f(x) corresponds to vk = f

(
2πk

N

)
in physical space, and

if g(x) corresponds to wk = g

(
2πk

N

)
in physical space, then

then f(x)g(x) corresponds to vkwk = f

(
2πk

N

)
g

(
2πk

N

)
So the physical coordinates of a product of functions are just the products of the physical coordinates
of the two functions. Meanwhile, frequency space is good for understanding convolution of signals.
In the world of differentiable functions f(x) and g(x), their convolution is defined as the function:

f ∗ g = h where h(x) =

∫ π

−π
f(y)g(x− y)dy (354)

113

In our discrete world, where we approximate the functions f and g by their values at the multiples
of 2π

N (i.e. their physical space coordinates), we have:

v ∗ v′ := the vector w =

w1

...
wN

 such that wk =
1

N

N∑
l=1

vlv
′
k−l (355)

(the indices of v′ are taken with period N , i.e. we write v′l = v′N+l if l ≤ 0). In this language,
the frequency space coordinates of the convolution are simply the products of the frequency space
coordinates of v and w:

F−1w = coordinate-wise multiplication of (F−1v) and (F−1v′) (356)

So it is very helpful to have an efficient way to go between the physical and frequency coordinates
of a signal. You might think that formulas (349) and (353) are enough: after all, you only need to
multiply an N ×N matrix with a vector. But the number of operation this takes is of the order of
N2, which is huge when the number N measures in the thousands. Fortunately, people have come
up with a great algorithm called the Fast Fourier Transform (FFT) for multiplication with F ,
which only takes approximately N logN steps. The way to do this is to note that products such
as (349) would take significantly fewer than N2 steps if the matrix F were sparse, i.e. had a lot of
zeroes. This is alas not the case, but not all is lost, since F can be written as a product of sparser
matrices:

F 2N =

[
IN DN

IN DN

] [
FN 0
0 FN

]
P2N (357)

where:

• FN is the N ×N matrix (350)

• F 2N is the analogous matrix obtained by starting with 2N instead of N

• DN is the diagonal matrix with entries ω, ω2, ..., ωN

• P2N is the permutation matrix corresponding to the permutation (1, 3, ..., 2N −1, 2, 4, ..., 2N)

Since the first and third matrices in the right-hand side of (357) are very sparse, they contribute
little to the time it takes to multiply the matrix F 2N to any vector. Meanwhile, the second matrix
in the right-hand side of (357) is half-full of zeroes. Iterating the above procedure (i.e. writing the
matrix F 2N in terms of FN via (357), then in terms of FN/2 etc...) allows you to compute (349)
in N logN time. By conjugation, the same is true of (353).

114

